Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x-y+1\right)^2+\left(x-3\right)^2-4y+2007\)
\(=4x^2+y^2+1-4xy+4x-2y+x^2-6x+9-4y+2007\)
\(=5x^2-4xy-2x-6y+y^2+2017\)
\(=\left[y^2-2y\left(2x+3\right)+\left(2x+3\right)^2\right]+\left(x^2-14x+49\right)+1959\)
\(=\left(y-2x-3\right)^2+\left(x-7\right)^2+1959\ge1959\)
\(minA=1959\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=17\end{matrix}\right.\)
https://hoc24.vn/cau-hoi/ba4b4c4-2a2b2-2a2c2-2b2-c2phan-tich-b-thanh-bon-nhan-tu-bac-nhat.2532005897467
=> giúp mình được ko
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
x2 - 2x + y2 - 4y + 7 = (x2 - 2x + 1) + ( y2 - 4y + 4) + 2 = (x - 1)2 + (y - 2)2 + 2
Vì (x - 1)2 ≥ 0 \(\forall\)x
(y - 2)2 ≥ 0 \(\forall\)x
=> (x - 1)2 + (y - 2)2 ≥ 0 \(\forall\)x
=> (x - 1)2 + (y - 2)2 + 2 ≥ 2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy GTNN của x2 - 2x + y2 - 4y +7 = 2 khi x = 1; y = 2
Đặt \(A=x^2-2x+y^2-4y+7\)
\(\Rightarrow A=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+2\)
Vì \(\left(x-1\right)^2\ge0\forall x\); \(\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x,y\)
hay \(A\ge2\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy \(minA=2\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)
\(ĐTXR\Leftrightarrow x=4\)
b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(ĐTXR\Leftrightarrow x=1\)
c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
a: Ta có: \(A=-x^2-8x+1\)
\(=-\left(x^2+8x-1\right)\)
\(=-\left(x^2+8x+16-17\right)\)
\(=-\left(x+4\right)^2+17\le17\forall x\)
Dấu '=' xảy ra khi x=-4
b: Ta có: \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
\(a,A=x^2-2x+2=\left(x-1\right)^2+1\ge1\)
dấu"=" xảy ra<=>x=1
\(b,B=2x^2-5x+2=2\left(x^2-\dfrac{5}{2}x+1\right)=2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{9}{16}\right)\)
\(=2\left[\left(x-\dfrac{5}{4}\right)^2-\dfrac{9}{16}\right]=2\left(x-\dfrac{5}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)
dấu"=" xảy ra<=>x=5/4
c,\(C=x^2+2xy+4y^2+3=\left(x+y\right)^2+3\left(y^2+1\right)\ge3\)
dấu"=" xảy ra<=>x=y=0
d,\(D=\left|x-1\right|+|2x-1|=|1-x|+|2x-1|\ge|1-x+2x-1|\)
\(=|x|\ge0\)
dấu"=" xảy ra<=>\(x=0\)
\(C=x^2-2x+y^2+4y+8\)
\(C=\left(x^2-2x\right)+\left(y^2+4y\right)+8\)
\(C=\left(x^2-2\cdot x\cdot1+1^2\right)+\left(y^2+2\cdot y\cdot2+2^2\right)+\left(8-1-2^2\right)\)
\(C=\left(x-1\right)^2+\left(y+2\right)^2+3\)
mà (x-1)2 và (y+2)2 luôn lớn hơn hoặc bằng 0
\(\Rightarrow C\ge3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy, Cmin = 3 <=> x = 1; y = -2
ta có : C=(x2-2x+1)+(y2-4y+4)-4
=(x-1)2 +(y-2)2-4 >=-4
min C=-4 tai x=1,y=2