Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=(|x+3|+6)^2-7
Có |x+3|>/0=>|x+3|+6>/0+6=6
=>(|x+3|+6)^2>/6^2=36
=>B=(|x+3|+6)^2-7>/36-7=29
Vậy min B=29<=>x=0
A = -2 + 3\(\sqrt{x+1}\)
Ta có: \(\sqrt{x+1}\)>= 0
=> A >= -2
A = -2 khi \(\sqrt{x+1}\)= 0 => x = -1
dựa vào điều kiện có nghĩa của căn thức, biểu thức dưới dấu căn phải dương và căn thức luôn lớn hoan hoặc bằng 0 nên
\(\sqrt{x+1}\ge0\Leftrightarrow3\sqrt{x+1}\ge0\Leftrightarrow-2+3\sqrt{x+1}\ge-2\)
\(\Rightarrow A_{min}=-2\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
a)\(A=12-\left|x-3\right|-\left|y+7\right|\)
\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)
\(\Rightarrow A\le12-0-0=12\)
Vậy Max A = 12 <=> x = 3 ; y = -7
b)\(B=-\left(x-2018\right)^6-1\)
\(-\left(x-2018\right)^6\le0\)
\(B\le0-1=-1\)
Vậy Max B = -1 <=> x = 2018
a) \(A=12-\left|x-3\right|-\left|y+7\right|\)
Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)
suy ra: \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)
Vậy MIN A = 12
Dấu "=" xảy ra <=> \(x=3;y=-7\)
b) \(B=-\left(x-2018\right)^6-1\)
Nhận thấy: \(\left(x-2018\right)^6\ge0\)
suy ra: \(B=-\left(x-2018\right)^2-1\le-1\)
Vậy MIN B = -1
Dấu "=" xảy ra <=> \(x=2018\)
c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)
Nhận thấy: \(\left|x+8\right|\ge0\) \(\left(3y+7\right)^{2016}\ge0\)
suy ra: \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)
Vậy MIN C = 20/7
Dấu "=" xảy ra <=> \(x=-8;y=-\frac{7}{3}\)
bữa nay thi vong trường mình đã làm bài đó rồi bằng-7 chắc 100 phầm trăm
Giá trị nhỏ nhất của A là -7 tại X=0