Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 4n3-5n-1 là SCP
Có 4n3-5n-1=(n+1)(4n2-4n-1)
Gọi (n+1; 4n2-4n-1)=d ( d thuộc N)
=> n+1 chia hết cho d và 4n2-4n-1 chia hết cho d
Mà 4n2-4n-1 =(n+1)(4n-8) + 7
=> 7 chia hết cho d
=> d = 7 hoặc 1
Có n(n+1) +7 không chia hết cho 7 => n(n+1) không chia hết cho 7 => n+1 không chia hết cho 7 => d khác 7
=> d=1
=> (n+1; 4n2-4n-1) =1
mả 4n3-5n-1=(n+1)(4n2-4n-1) là SCP
=> n+1 và 4n2-4n-1 đồng thời là SCP
=> 4n+4 và 4n2-4n-1 là SCP
=> 4n +4 + 4n2-4n-1 = 4n^2 +3 là SCP
mà 4n2+3 chia 4 dư 3
=> Vô lý
=> Giả sử sai
=> đccm
T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12
Dấu bằng xảy ra khi và chỉ khi {a2+b2+c2=3abca=b=c⇔3a2=3a3⇔a=1⇒a=b=c=1
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
Vì n là số nguyên dương nên \(n^2+n+3>3\). Gọi r là số dư khi chia n cho 3, \(r\in\left\{0,1,2\right\}\). Nếu r=0 hoặc r=2 thì \(n^2+n+3⋮3\)
Mẫu thuẫn với giả thiết \(n^2+n+3\)là số nguyên tố. Do đó r=1 hay n chia 3 dư 1. Khi đó \(7n^2+6n+2017\)chia 3 dư 2. Mà 1 số chính phương có số dư khi chia cho 3 là 0 hoặc 1 nên => đpcm
Ta có \(n\inℕ^∗\Rightarrow n\equiv0;1;2\left(mod3\right)\left(1\right)\)
Nếu \(n\equiv0\left(mod3\right)\Rightarrow n^2+n+3\equiv0\left(mod3\right)\) mà \(n^2+n+3>3\forall n\inℕ^∗\)
=> \(n^2+n+3\) là hợp số ( mâu thuẫn )
=> \(n\equiv0\left(mod3\right)\) (loại) (2)
Nếu \(n\equiv2\left(mod3\right)\Rightarrow n^2+n+3\equiv9\equiv0\left(mod3\right)\) mà \(n^2+n+3>3\forall n\inℕ^∗\)
=> \(n^2+n+3\) là hợp số ( mâu thuẫn )
=> \(n\equiv2\left(mod3\right)\)( loại) (3)
Từ (1);(2);(3) => \(n\equiv1\left(mod3\right)\)
Hay n chia 3 dư 1
Với \(n\equiv1\left(mod3\right)\) ta có
\(7n^2+6n+2017\equiv2030\equiv2\left(mod3\right)\)
=> \(7n^2+6n+2017\) chia 3 dư 2
Lại có : Một số chính phương bất kì khi chia cho 3 dư 0 hoặc dư 1 (5)
Từ (4);(5) => \(7n^2+6n+2017\) không phải là số chính phương (đpcm)