K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2020

Vì n là số nguyên dương nên \(n^2+n+3>3\). Gọi r là số dư khi chia n cho 3, \(r\in\left\{0,1,2\right\}\). Nếu r=0 hoặc r=2 thì \(n^2+n+3⋮3\)

Mẫu thuẫn với giả thiết \(n^2+n+3\)là số nguyên tố. Do đó r=1 hay n chia 3 dư 1. Khi đó \(7n^2+6n+2017\)chia 3 dư 2. Mà 1 số chính phương có số dư khi chia cho 3 là 0 hoặc 1 nên => đpcm

Ta có \(n\inℕ^∗\Rightarrow n\equiv0;1;2\left(mod3\right)\left(1\right)\) 

Nếu \(n\equiv0\left(mod3\right)\Rightarrow n^2+n+3\equiv0\left(mod3\right)\) mà  \(n^2+n+3>3\forall n\inℕ^∗\)

=> \(n^2+n+3\) là hợp số ( mâu thuẫn )

=> \(n\equiv0\left(mod3\right)\) (loại)  (2)

Nếu \(n\equiv2\left(mod3\right)\Rightarrow n^2+n+3\equiv9\equiv0\left(mod3\right)\) mà  \(n^2+n+3>3\forall n\inℕ^∗\)

=> \(n^2+n+3\) là hợp số ( mâu thuẫn )

=> \(n\equiv2\left(mod3\right)\)( loại)   (3)

Từ (1);(2);(3) => \(n\equiv1\left(mod3\right)\) 

Hay n chia 3 dư 1

Với \(n\equiv1\left(mod3\right)\) ta có

\(7n^2+6n+2017\equiv2030\equiv2\left(mod3\right)\) 

=> \(7n^2+6n+2017\) chia 3 dư 2

Lại có : Một số chính phương bất kì khi chia cho 3 dư 0 hoặc dư 1 (5)

Từ (4);(5) => \(7n^2+6n+2017\) không phải là số chính phương (đpcm)

26 tháng 6 2018

1) Vì n2 + n + 3 là số nguyên tố nên n2 + n + 3 không chia hết cho 3

=> n2 + n không chia hết cho 3 hay n(n + 1) không chia hết cho 3

=> n và n + 1 đều không chia hết cho 3

=> n chia 3 dư 1

=> n2 + n + 3 chia 3 dư 2

=> 7(n2 + n + 3) chia 3 dư 2

hay 7n2 + 7n + 21 chia 3 dư 2

Lại có n chia 3 dư 1 nên 1996 - n chia hết cho 3

Do đó 7n2 + 7n + 21 + 1996 - n chia 3 dư 2

hay 7n2 + 6n + 2017 chia 3 dư 2

=> 7n2 + 6n + 2017 không là SCP

Vậy ta có đpcm

Giả sử 4n3-5n-1 là SCP

Có 4n3-5n-1=(n+1)(4n2-4n-1)

Gọi (n+1; 4n2-4n-1)=d   ( d thuộc N)

=> n+1 chia hết cho d và 4n2-4n-1 chia hết cho d

 Mà 4n2-4n-1 =(n+1)(4n-8) + 7 

=> 7 chia hết cho d

=> d = 7 hoặc 1

Có n(n+1) +7 không chia hết cho 7 => n(n+1) không chia hết cho 7 => n+1 không chia hết cho 7 => d khác 7

=> d=1

=> (n+1; 4n2-4n-1) =1

mả 4n3-5n-1=(n+1)(4n2-4n-1) là SCP

=> n+1 và 4n2-4n-1 đồng thời là SCP

=> 4n+4 và 4n2-4n-1 là SCP

=> 4n +4 + 4n2-4n-1 = 4n^2 +3 là SCP

mà 4n2+3 chia 4 dư 3 

=> Vô lý

=> Giả sử sai

=> đccm

28 tháng 11 2021


     

T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12

Dấu bằng xảy ra khi và chỉ khi {a2+b2+c2=3abca=b=c⇔3a2=3a3⇔a=1⇒a=b=c=1