Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)
\(=\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\)
\(=\dfrac{a^2+b^2+c^2}{2abc}\) (đpcm)
a2 = b2 + c2 - 2bc.cosA
b2 = a2 + c2 - 2ac.cosB
c2 = a2 + b2 - 2ab.cosC
⇒ a2 + b2 + c2 = 2bc.cosA + 2ac.cosB + 2ab.cosC
⇒ VT = \(\dfrac{2bc.cosA}{2abc}+\dfrac{2ab.cosC}{2abc}+\dfrac{2ac.cosB}{2abc}\)
⇒ VT = \(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)
Ta chứng minh được:
\(\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\right)^2\ge3\left(a^2+b^2+c^2\right)\)
Thật vậy, bđt đúng với \(\left(\dfrac{ab}{c};\dfrac{bc}{a};\dfrac{ca}{b}\right)=\left(x;y;z\right)\)
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Đẳng thức xảy ra khi x=y=z=> BĐT cần chứng minh xảy ra dấu bằng khi a=b=c
\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge3\)
ta có \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow1\ge\sqrt[3]{a^2b^2c^2}\)
a) theo bđt cauchy schwarz ta có
\(\dfrac{a^3b^3}{c}+\dfrac{b^3c^3}{a}+\dfrac{c^3a^3}{b}\ge3\sqrt[3]{\dfrac{a^6b^6c^6}{abc}}=3\dfrac{a^2b^2c^2}{\sqrt[3]{abc}.1}\ge3\dfrac{a^2b^2c^2}{\sqrt[3]{a^3b^3c^3}}=3abc\)
Đặt \(D=\dfrac{\text{x}^2+a}{xy+a}\)
\(E=\dfrac{y^2+b}{yz+b}\)
\(F=\dfrac{z^2+c}{xz+c}\)
Dự đoán: Đẳng thức xảy ra khi: D=E=F=1
Áp dụng bđt AM_GM :
||bđt có được dùng ngược lại giống như đl Ta-let/ Py-ta-go ko??||
\(\dfrac{x^2+a}{yz+b}\cdot\dfrac{y^2+b}{xz+c}\cdot\dfrac{z^2+c}{xy+a}\ge1\)
\(\Leftrightarrow\dfrac{\text{x}^2+a}{xy+a}\cdot\dfrac{y^2+b}{yz+b}\cdot\dfrac{z^2+c}{xz+c}\ge1\) (*)
*Nhận xét: Giá trị của VT phụ thuộc vào x,y,z .
Trong 3 số x,y,z có ít nhất 1 số >/ các số còn lại => trong 3 đa thức D, E, F có ít nhất 1 đa thức >/ 1 với mọi x,y,z,a,b,c dương
\(\Rightarrow\) (*) đúng
Hay \(\dfrac{x^2+a}{yz+b}+\dfrac{y^2+b}{xz+c}+\dfrac{z^2+c}{xy+a}\ge3\) \(\forall x,y,z,a,b,c>0\)
Dấu "=" xảy ra khi D=E=F=1 , hay x=y=z
|| kết luận viết như nào đây........||
----------------------
Không biết có đúng không nữa, sai sót gì sư phụ góp ý cho con nhá..... nhớ góp ý nhẹ nhẹ thôi không là broken heart T_T!! Cảm ơn ạ
Áp dụng BĐT AM-GM:
\(\sum\dfrac{x^2+a}{yz+b}\ge\sum\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}\)
Đặt \(x^2+y^2+y^2+a+b+c=m\)(m>0)
Áp dụng BĐT chebyshev:
\(\left[\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}+\dfrac{2\left(y^2+b\right)}{x^2+z^2+2c}+\dfrac{2\left(z^2+c\right)}{x^2+y^2+2a}\right]\left[\left(y^2+z^2+2b\right)+\left(x^2+z^2+2c\right)+\left(x^2+y^2+2a\right)\right]\ge6\left(x^2+y^2+z^2+a+b+c\right)\)
hay \(VT.2m\ge6m\Leftrightarrow VT\ge3\)
Điều này đúng khi ta có thứ tự sắp biến sau:
\(\left\{{}\begin{matrix}\dfrac{x^2+a}{y^2+z^2+2b}\ge\dfrac{y^2+b}{x^2+z^2+2c}\ge\dfrac{z^2+c}{x^2+y^2+2a}\\y^2+z^2+2b\le x^2+z^2+2c\le x^2+y^2+2a\end{matrix}\right.\)
Thật vậy, giả sử \(x\ge y\ge z\) và \(a=max\left\{a,b,c\right\}\) thì điều trên đúng
P/s : dòng cuối em chém đó, sir giải quyết nốt đi,mắc khúc cuối :v
\(\sum\left(\dfrac{a^2}{b}\right)=\sum\left(\dfrac{a^4}{a^2b}\right)\ge\dfrac{\sum^2a^2}{\sum a^2b}\ge\dfrac{\sum^2a^2}{\sqrt{\sum a^2\cdot\sum a^2b^2}}\)
\(\Rightarrow\sum\left(\dfrac{a^2}{b}\right)\ge\dfrac{\sum^2a^2}{\sqrt{\dfrac{1}{3}\sum a^2\cdot\sum^2a^2}}=\sqrt{3\sum a^2}\)
Lời giải:
Đặt \((b+c-a, c+a-b, a+b-c)=(x,y,z)\Rightarrow (a,b,c)=(\frac{y+z}{2}; \frac{x+z}{2}; \frac{x+y}{2})\)
Tất nhiên $x,y,z>0$ vì $a,b,c$ là 3 cạnh tam giác.
Khi đó, áp dụng BĐT Cô-si cho các số dương:
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)
\(\geq 3\sqrt[3]{\frac{(y+z)(x+z)(x+y)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{yz}.2\sqrt{xz}.2\sqrt{xy}}{8xyz}}=3\)
Ta có đpcm
b) Vẫn cách đặt giống phần a. Áp dụng BĐT Cô-si:
\(\frac{a}{a+b-c}+\frac{b}{b+c-a}+\frac{c}{c+a-b}=\frac{y+z}{2z}+\frac{x+z}{2x}+\frac{x+y}{2y}=\frac{y}{2z}+\frac{z}{2x}+\frac{x}{2y}+\frac{3}{2}\)
\(\geq 3\sqrt[3]{\frac{y}{2z}.\frac{z}{2x}.\frac{x}{2y}}+\frac{3}{2}=\frac{3}{2}+\frac{3}{2}=3\)
Ta có đpcm.