Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta c/m BĐT sau:
Với a, b > 0 thì \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì a, b > 0)
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
Như vậy ta có \(\left\{{}\begin{matrix}x^3+y^3\ge xy\left(x+y\right)\\y^3+z^3\ge yz\left(y+z\right)\\z^3+x^3\ge zx\left(z+x\right)\end{matrix}\right.\)
Do đó \(VT\ge\dfrac{\sqrt{xyz+xy\left(x+y\right)}}{xy}+\dfrac{\sqrt{xyz+yz\left(y+z\right)}}{yz}+\dfrac{\sqrt{xyz+zx\left(z+x\right)}}{zx}\)
\(=\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}+\dfrac{\sqrt{yz\left(x+y+z\right)}}{yz}+\dfrac{\sqrt{zx\left(x+y+z\right)}}{zx}\)
\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\)
\(=\sqrt{x+y+z}.\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\)
\(=\sqrt{x+y+z}.\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\ge\sqrt{3\sqrt[3]{xyz}}.3\sqrt[3]{\sqrt{xyz}}=3\sqrt{3}\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)
1) Lợi dụng BĐT AM-GM cho 3 số dương, ta được:
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3\sqrt[3]{x^3.y^3.1}}}{xy}=\sqrt{\dfrac{3}{xy}}\)
Tương tự:
\(\dfrac{\sqrt{1+y^3+z^3}}{yz}\ge\sqrt{\dfrac{3}{yz}}\)
\(\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge\sqrt{\dfrac{3}{xz}}\)
Cộng từng vế các BĐT trên. ta được:
\(VT\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)
Tiếp tục lợi dụng AM-GM, ta được
\(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\ge3\sqrt[3]{\dfrac{1}{\sqrt{xy}}.\dfrac{1}{\sqrt{yz}}.\dfrac{1}{\sqrt{xz}}}=3\)
Suy ra đpcm. Đẳng thức xảy ra khi x=y=z=1
Bài này cũng dễ mà:
Áp dụng BĐT Cô-si, ta có:
\(y+z+1\ge3\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)
\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)
Mà \(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)
Áp dụng BĐT Cauchy -Schwaz:
\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
Mà:
\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)
\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)
Áp dụng BĐT Bunhicopski:
\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)
\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1
Gọi \(A=\sum\dfrac{x^3}{\sqrt{y^2+3}}\)
Theo Holder: \(A.A.\left(\left(y^2+3\right)+\left(z^2+3\right)+\left(x^2+3\right)\right)\ge\left(x^3+y^3+z^3\right)^3\)
\(\Rightarrow A^2\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{x^2+y^2+z^2+9}\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}=\dfrac{\left(x^3+y^3+z^3\right)^3}{\left(x+y+z\right)^2+xy+yz+zx}\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{\left(x+y+z\right)^2+\dfrac{\left(x+y+z\right)^2}{3}}\)
Ta có đánh giá sau: \(x^3+y^3+z^3\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\dfrac{\left(x+y+z\right)^3}{9}\)
\(\Rightarrow A^2\ge\dfrac{\dfrac{\left(x+y+z\right)^3}{9}}{\left(x+y+z\right)^2+\dfrac{\left(x+y+z\right)^2}{3}}=\dfrac{x+y+z}{12}\ge\dfrac{\sqrt{3\left(xy+yz+zx\right)}}{12}\ge\dfrac{1}{4}\)
\(\Rightarrow A\ge\dfrac{1}{2}\)
Lời giải:
Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)
Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)
-------
Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)
\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)
\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)
\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)
Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)
Suy ra:
\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)
\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Áp dụng BĐT AM-GM ta có:
\(\dfrac{x^4}{y+3z}+\dfrac{y+3z}{16}+\dfrac{1}{4}+\dfrac{1}{4}\ge4\sqrt[4]{\dfrac{x^4}{y+3z}\cdot\dfrac{y+3z}{16}\cdot\dfrac{1}{4}\cdot\dfrac{1}{4}}=x\)
\(\Rightarrow\dfrac{x^4}{y+3z}\ge x-\dfrac{y+3z}{16}-\dfrac{1}{2}\)
Tương tự cho 2 BĐT còn lại:
\(\dfrac{y^4}{z+3x}\ge y-\dfrac{z+3x}{16}-\dfrac{1}{2};\dfrac{z^4}{x+3y}\ge z-\dfrac{x+3y}{16}-\dfrac{1}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{3}{4}\left(x+y+z\right)-\dfrac{3}{2}\ge\dfrac{3}{4}\cdot3-\dfrac{3}{2}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Cách khác:
\(\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4.\sqrt{3\left(x^2+y^2+z^2\right)}}=\dfrac{\sqrt{\left(x^2+y^2+z^2\right)^3}}{4\sqrt{3}}\)
\(\ge\dfrac{\sqrt{\left(xy+yz+zx\right)^3}}{4\sqrt{3}}\ge\dfrac{3\sqrt{3}}{4\sqrt{3}}=\dfrac{3}{4}\)
Dấu = xảy ra khi \(x=y=z=1\)
Lời giải:
Ta có:
\(3=xy+yz+xz\leq \frac{(x+y+z)^2}{3}\Rightarrow x+y+z\geq 3\)
Áp dụng BĐT AM-GM:
\(x^3+8=(x+2)(x^2-2x+4)\leq \left(\frac{x+2+x^2-2x+4}{2}\right)^2\)
\(\Rightarrow \sqrt{x^3+8}\leq \frac{x^2-x+6}{2}\Rightarrow \frac{x^2}{\sqrt{x^3+8}}\geq \frac{2x^2}{x^2-x+6}\)
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \text{VT}\geq \underbrace{2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)}_{M}\)
Áp dụng BĐT Cauchy-Schwarz:
\(M\geq \frac{2(x+y+z)^2}{x^2-x+6+y^2-y+6+z^2-z+6}=\frac{2(x+y+z)^2}{x^2+y^2+z^2-(x+y+z)+18}\)
\(\Leftrightarrow M\geq \frac{2(x+y+z)^2}{(x+y+z)^2-(x+y+z)+12}\) (do $xy+yz+xz=3$)
Mà :
\(\frac{(x+y+z)^2}{(x+y+z)^2-(x+y+z)+12}-1=\frac{(x+y+z)^2+(x+y+z)-12}{(x+y+z)^2-(x+y+z)+12}=\frac{(x+y+z-3)(x+y+z+4)}{(x+y+z)^2-(x+y+z)+12}\geq 0\) do $x+y+z\geq 0$
Do đó: \(M\geq 1\Rightarrow \text{VT}\geq 1\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)
Đặt \(D=\dfrac{\text{x}^2+a}{xy+a}\)
\(E=\dfrac{y^2+b}{yz+b}\)
\(F=\dfrac{z^2+c}{xz+c}\)
Dự đoán: Đẳng thức xảy ra khi: D=E=F=1
Áp dụng bđt AM_GM :
||bđt có được dùng ngược lại giống như đl Ta-let/ Py-ta-go ko??||
\(\dfrac{x^2+a}{yz+b}\cdot\dfrac{y^2+b}{xz+c}\cdot\dfrac{z^2+c}{xy+a}\ge1\)
\(\Leftrightarrow\dfrac{\text{x}^2+a}{xy+a}\cdot\dfrac{y^2+b}{yz+b}\cdot\dfrac{z^2+c}{xz+c}\ge1\) (*)
*Nhận xét: Giá trị của VT phụ thuộc vào x,y,z .
Trong 3 số x,y,z có ít nhất 1 số >/ các số còn lại => trong 3 đa thức D, E, F có ít nhất 1 đa thức >/ 1 với mọi x,y,z,a,b,c dương
\(\Rightarrow\) (*) đúng
Hay \(\dfrac{x^2+a}{yz+b}+\dfrac{y^2+b}{xz+c}+\dfrac{z^2+c}{xy+a}\ge3\) \(\forall x,y,z,a,b,c>0\)
Dấu "=" xảy ra khi D=E=F=1 , hay x=y=z
|| kết luận viết như nào đây........||
----------------------
Không biết có đúng không nữa, sai sót gì sư phụ góp ý cho con nhá..... nhớ góp ý nhẹ nhẹ thôi không là broken heart T_T!! Cảm ơn ạ
Áp dụng BĐT AM-GM:
\(\sum\dfrac{x^2+a}{yz+b}\ge\sum\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}\)
Đặt \(x^2+y^2+y^2+a+b+c=m\)(m>0)
Áp dụng BĐT chebyshev:
\(\left[\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}+\dfrac{2\left(y^2+b\right)}{x^2+z^2+2c}+\dfrac{2\left(z^2+c\right)}{x^2+y^2+2a}\right]\left[\left(y^2+z^2+2b\right)+\left(x^2+z^2+2c\right)+\left(x^2+y^2+2a\right)\right]\ge6\left(x^2+y^2+z^2+a+b+c\right)\)
hay \(VT.2m\ge6m\Leftrightarrow VT\ge3\)
Điều này đúng khi ta có thứ tự sắp biến sau:
\(\left\{{}\begin{matrix}\dfrac{x^2+a}{y^2+z^2+2b}\ge\dfrac{y^2+b}{x^2+z^2+2c}\ge\dfrac{z^2+c}{x^2+y^2+2a}\\y^2+z^2+2b\le x^2+z^2+2c\le x^2+y^2+2a\end{matrix}\right.\)
Thật vậy, giả sử \(x\ge y\ge z\) và \(a=max\left\{a,b,c\right\}\) thì điều trên đúng
P/s : dòng cuối em chém đó, sir giải quyết nốt đi,mắc khúc cuối :v