Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\left(3x-5\right)^2+\left(2-x\right)^3+\left(3-2x\right)^3=0\)
<=>\(\left(5-3x\right)^2+\left(2-x+3-2x\right)\left[\left(2-x\right)^2+\left(2-x\right)\left(3-2x\right)+\left(3-2x\right)^2\right]=0\)
<=>\(\left(5-3x\right)^2+\left(5-3x\right)\left(4-4x+x^2-6+7x-2x^2+9-12x+4x^2\right)=0\)
<=>\(\left(5-3x\right)^{^2}+\left(5-3x\right)\left(7-9x-3x^2\right)=0\)
<=>\(\left(5-3x\right)\left(5-3x+7-9x-3x^2\right)=0\)
<=>\(3.\left(5-3x\right)\left(4-4x-x^2\right)=0\)
Mà 4-4x-x^2>0 nên 5-3x=0 <=>x=5/3
\(\dfrac{x-1}{13}-\dfrac{2x-13}{15}=\dfrac{3x-15}{27}-\dfrac{2x-27}{29}\)
\(\Leftrightarrow\dfrac{x-1}{13}-1-\dfrac{2x-13}{15}-1=\dfrac{3x-15}{27}-1-\dfrac{2x-27}{29}-1\)
\(\Leftrightarrow\dfrac{x-1-13}{13}-\dfrac{2x-13-15}{15}=\dfrac{3x-15-27}{27}-\dfrac{4x-27-29}{29}\)
\(\Leftrightarrow\dfrac{x-14}{13}-\dfrac{2x-24}{15}=\dfrac{3x-42}{27}-\dfrac{4x-56}{29}\)
\(\Leftrightarrow\dfrac{x-14}{13}-\dfrac{2\left(x-14\right)}{15}-\dfrac{3\left(x-14\right)}{27}-\dfrac{4\left(x-14\right)}{29}=0\)
\(\Leftrightarrow\left(x-14\right)\left(\dfrac{1}{13}-\dfrac{2}{15}-\dfrac{3}{27}-\dfrac{4}{29}\right)=0\)
\(\Leftrightarrow x-14=0\) ( Vì: \(\dfrac{1}{13}-\dfrac{2}{15}-\dfrac{3}{27}-\dfrac{4}{29}\ne0\))
\(\Leftrightarrow x=14\)
\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)
\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)
\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)
ĐK : \(x\ge2016;y\ge2017;z\ge2018\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt{x-2016}\leq \frac{1+(x-2016)}{2}=\frac{x-2015}{2}\)
\(\sqrt{y-2017}\leq \frac{1+(y-2017)}{2}=\frac{y-2016}{2}\)
\(\sqrt{z-2018}\leq \frac{1+(z-2018)}{2}=\frac{z-2017}{2}\)
Cộng theo vế thu được:
\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\leq \frac{x-2015}{2}+\frac{y-2016}{2}+\frac{z-2017}{2}+3024=\frac{x+y+z}{2}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-2016=1\\ y-2017=1\\ z-2018=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2017\\ y=2018\\ z=2019\end{matrix}\right.\)
máy tính mik khó viết nhưng bài này có mẫu chung nên dễ làm mà
bn cứ đưa mẫu ra có x-8 chung đó
sau đó tính tiếp theo bt là ra mà
bạn ơi bạn làm chi tiết ra ik mk thư rôi nhưng không đc
1. \(\dfrac{x+1}{x-1}+\dfrac{3x}{x+1}=4\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\cdotĐKXĐ:x-1\ne0\Leftrightarrow x\ne1
\)
\(x+1\ne0\Leftrightarrow x\ne-1\)
pt: x2 + x + x + 1 +3x2 - 3x = 4x2 + 4x - 4x -4
\(\Leftrightarrow\) x2 + 3x2 - 4x2 + x + x - 3x + 4x - 4x = -4 -1
\(\Leftrightarrow\) - 1x = - 5
\(\Leftrightarrow\) x = \(\dfrac{-5}{-1}\)
\(\Leftrightarrow\) x = 5 ( nhận )
Vậy pt có tập nghiệm S= \(\left\{5\right\}\)
2. \(\left|x+2\right|< 2x+10\)
Vì x + 2 < 2x + 10(1) nên x + 2 > 0
-(x + 2) < 2x + 10(2) nên - (x + 2) <0
pt(1): x + 2 < 2x + 10
\(\Leftrightarrow\) x - 2x < 10 -2
\(\Leftrightarrow\) -x < 8
\(\Leftrightarrow\) x > -8 ( nhận )
pt(2): -(x + 2) < 2x + 10
\(\Leftrightarrow\) - x - 2 < 2x + 10
\(\Leftrightarrow\) - x - 2x < 10 + 2
\(\Leftrightarrow\) -3x < 12
\(\Leftrightarrow\) x < \(\dfrac{12}{-3}\)
\(\Leftrightarrow\) x < -4 ( nhận)
Vậy bpt có tập nghiệm S= \(\left\{x\left|x< -4\right|\right\}\)
\(\left\{x\left|x>-8\right|\right\}\)
\(a,PT\Leftrightarrow\left(x+2\right)\left(3x+5\right)-\left(2x-4\right)\left(x+1\right)=0\)
<=> \(\left(x+2\right)\left(3x+5\right)-2\left(x+2\right)\left(x+1\right)=0\)
<=> \(\left(x+2\right)\left(3x+5-x-1-2\right)=0\)
<=> \(\left(x+2\right)\left(2x-2\right)=0\)
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Vậy: ...
\(b,PT\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-4\right)\left(x+5\right)=0\)
<=> \(\left(x-4\right)\left(2x+4+x+5\right)=0\)
<=> \(\left(x-4\right)\left(3x+9\right)=0\)
<=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
Vậy: ...
\(5x+2< 3x-2\\ \Leftrightarrow5x-3x< -2-2\\ \Leftrightarrow2x< -4\\ \Leftrightarrow x< -2\)
Vậy \(S=\left\{x|x< -2\right\}\)
kể cả x là âm hay nguyên thì nó cũng là phép tính sai