K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

F(x)=\(x^7-2018x^6+2018x^5-2018x^4+2018x^3-2018x^2+2018x+1.\)

x=2017=>2018=x+1 thay vào F(x) ta có:

F(x)=x+1=2018

20 tháng 8 2017

pkm;lkml

Ta có: x=2017

nên x+1=2018

Ta có: \(P=x^{15}-2018x^{14}+2018x^{13}-2018x^{12}+...+2018x^3-2018x^2+2018x-2018\)

\(=x^{15}-\left(x+1\right)\cdot x^{14}+\left(x+1\right)\cdot x^{13}-\left(x+1\right)\cdot x^{12}+...+\left(x+1\right)\cdot x^3-\left(x+1\right)\cdot x^2+\left(x+1\right)\cdot x-\left(x+1\right)\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+...+x^3-x^3+x^2-x^2+x-x-1\)

=-1

8 tháng 3 2021

@ 肖战Daytoy_1005 giup

\(A=x^9-2018x^8+2018x^7-2018x^6+2016x^5-2018x^4+2018x^3-2018x^2+2018x-2018\)

\(A=x^9-\left(2017+1\right)x^8+\left(2017+1\right)x^7-...+\left(2017+1\right)x-\left(2017+1\right)\)

\(A=x^9-\left(x+1\right)x^8+\left(x+1\right)x^7-...+\left(x+1\right)x-x-1\)

\(A=x^9-x^9-x^8+x^8+x^7-...+x^2+x-x-1\)

\(A=-1\)

15 tháng 1 2018
nhanh ho mk nha
16 tháng 11 2017

x = 2017 nha

17 tháng 11 2017

Ta có : x(x-2017)-2018x+2017.2018=0

=>x(x-2017)-2018(x-2017)=0

=>(x-2017)(x-2018)=0

=>x=2017;2018.

16 tháng 7 2019

Vì \(x=2017\Rightarrow x+1=2018\)

Thay \(x+1=2018\)vào biểu thức A ta được :

\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+\left(x+1\right)\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)

\(=1\)

16 tháng 7 2019

Tại x=2017 thì 2018 = x + 1 

Khí đó \(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)

\(=1\)

21 tháng 8 2018

b) f(x) = x(x+5) = 0

=>\(\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)

Vậy x=0 và -5

c) f(x) =x2 + 8x = 0

=>x*(x+8)=0

=>\(\orbr{\begin{cases}x=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-8\end{cases}}}\)

Vậy x=0 và -8

21 tháng 8 2018

a)\(f\left(x\right)=3\sqrt{2}-x-9\sqrt{2}=0\)

\(\Leftrightarrow-6\sqrt{2}-x=0\Leftrightarrow x=-6\sqrt{2}\)

b)\(f\left(x\right)=x\left(x+5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-5\end{cases}}}\)

c)\(f\left(x\right)=x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x+8=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-8\end{cases}}}\)

d)\(f\left(x\right)=x^2+8x+6=0\)

\(\Leftrightarrow x\left(x+8\right)=-6\)

<=>Khi x=-6 thì x+8=1(ko thõa mãn)

Khi x=-1 thì x+8=6(ko thõa mãn)

Khi x=1 thì x+8=-6(ko thõa mãn)

Khi x=6 thì x+8=-1(ko thõa mãn)

Vậy phương trình đã cho vô nghiệm

e)\(f\left(x\right)=x^2+2018x+2017=0\)

ta có : x2>0 =>2018x+2017=-x2

<=>2018x+x2=-2017

<=>x(2018+x)=-2017

<=>x=-1

vậy phương trình đã cho có ngiệm là S={-1}

i)\(f\left(x\right)=x^2+5=0\)

\(\Leftrightarrow x^2=-5\Leftrightarrow\hept{\begin{cases}x=-\sqrt{5}\\x=\sqrt{5}\end{cases}}\)

bạn tự kết luận nhé

8 tháng 5 2018

Ta có:

\(\left\{{}\begin{matrix}2018x-y^2=2018y-z^2\\2018y-z^2=2018z-x^2\\2018z-x^2=2018x-y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2018\left(x-y\right)=\left(y-z\right)\left(y+z\right)\left(1\right)\\2018\left(y-z\right)=\left(z-x\right)\left(z+x\right)\left(2\right)\\2018\left(z-x\right)=\left(x-y\right)\left(x+y\right)\left(3\right)\end{matrix}\right.\)

Lấy (1).(2).(3) ta được

\(2018^3.\left(x-y\right)\left(y-z\right)\left(z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Tới đây e làm nốt nhé

5 tháng 10 2021

\(\Leftrightarrow2018x^2-2018x+2019x-2019=0\\ \Leftrightarrow2018x\left(x-1\right)+2019\left(x-1\right)=0\\ \Leftrightarrow\left(2018x+2019\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\2018x=-2019\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2019}{2018}\end{matrix}\right.\)

25 tháng 10 2020

Đề:............

<=> - (1 - 2018x) + 2019x.(1 - 2018x) = 0

<=> (1 - 2018x).[(-1) + 2019x] = 0

Xét 2 trường hợp, ta có:

TH1: 1 - 2018x = 0          TH2: -1 + 2019x = 0

<=> 2018x = 1                 <=> 2019x = 1

<=> x = 1/2018                <=> x = 1/2019

Vậy x = 1/2018; 1/2019