Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
a: \(M\left(x\right)=2x^2+3\)
\(N\left(x\right)=3x^3-2x^2+x\)
b: \(M\left(x\right)+N\left(x\right)=3x^3+x+3\)
\(M\left(x\right)-N\left(x\right)=2x^2+3-3x^3+2x^2-x=-3x^3+2x^2-x+3\)
\(\text{a)}f\left(x\right)-g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
\(=\left(x^3-x^3\right)+\left(-2x^2+2x^2\right)+\left(3x-x\right)+\left(1+1-1\right)\)
\(=2x+1\)
\(\text{b)Vì f(x)-g(x)+h(x)=0}\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x\) \(=0-1=-1\)
\(\Rightarrow\) \(x\) \(=\left(-1\right):2=\dfrac{-1}{2}\)
\(\text{Vậy x=}\dfrac{-1}{2}\text{ thì f(x)-g(x)+h(x)=0}\)
a: \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
\(=2x^3-2x^2+4x+2x^2-1=2x^3+4x-1\)
b: f(x)-g(x)+h(x)=0
\(\Leftrightarrow2x^3+4x-1=0\)
\(\Leftrightarrow x\simeq0,2428\)
a) \(f\left(x\right)-g\left(x\right)\) hay \(x^3-2x^2+3x+1-x^3-x+1=-2x^2+2x+2\)
b) \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\) hay \(-2x^2+2x+2+2x^2-1=2x+1\Rightarrow2x+1=0\Rightarrow x=-\dfrac{1}{2}\)
a) \(F\left(x\right)=\left(2x^2-4x+5\right)-\left(x^2-6\right)+2x-3\)
\(=2x^2-4x+5-x^2+6+2x-3\)
\(=\left(2x^2-x^2\right)+\left(2x-4x\right)+\left(5+6-3\right)\)
\(=x^2-2x+8\)
Hệ số tự do của đa thức F(x) là: 8
Hệ số bậc 1 của đa thức F(x) là: -2
b) \(F\left(x\right)=x^2-2x+8\); \(G\left(x\right)=-x^2-2x-9\)
+) \(\Rightarrow F\left(x\right)+G\left(x\right)=\left(x^2-2x+8\right)+\left(-x^2-2x-9\right)\)
\(=\left(x^2-x^2\right)+\left(-2x-2x\right)+\left(8-9\right)=-4x-1\)
Vậy \(M\left(x\right)=-4x-1\)
+) và \(F\left(x\right)-G\left(x\right)=\left(x^2-2x+8\right)-\left(-x^2-2x-9\right)\)
\(=\left(x^2+x^2\right)+\left(-2x+2x\right)+\left(8+9\right)=2x^2+17\)
Vậy \(N\left(x\right)=2x^2+17\)
c)
+) M(x) có nghiệm khị và chỉ khi M(x) = 0
\(\Leftrightarrow-4x-1=0\Leftrightarrow-4x=1\Leftrightarrow x=\frac{-1}{4}\)
Vậy M(x) có 1 nghiệm là \(\frac{-1}{4}\)
+) N(x) có nghiệm khị và chỉ khi N(x) = 0
\(\Leftrightarrow2x^2+17=0\)
Mà \(2x^2+17\ge17\left(dox^2\ge0\right)\)
Nên N(x) vô nghiệm
d) F(x) = x2 - 3\(\Leftrightarrow x^2-2x+8=x^2-3\Leftrightarrow-2x=-11\)
\(\Leftrightarrow x=\frac{11}{2}\)
Vậy \(x=\frac{11}{2}\)thì F(x) = x2 - 3
`a,`
`M(x) = f(x) - g(x)`
`M(x)= (x^3-2x^2+2x+1)-(x^3+x+1)`
`M(x)= x^3-2x^2+2x+1-x^3-x-1`
`M(x)= (x^3-x^3)-2x^2+(2x-x)+(1-1)`
`M(x)= -2x^2+x`
`----`
`N(x)= g(x)+h(x)`
`N(x)= (x^3+x+1)+(2x^2-1)`
`N(x)= x^3+x+1+2x^2-1`
`N(x)=x^3+x+2x^2+(1-1)`
`N(x)=x^3+x+2x^2`
`b,`
`M(x) = -2x^2+x`
Bậc của đa thức: `2`
Hệ số cao nhất: `-2`
Không có hệ số tự do.
`N(x)=x^3+x+2x^2`
Bậc của đa thức: `3`
Hệ số cao nhất: `1`
Không có hệ số tự do.
`c,`
`M(-1)=-2*(-1)^2+(-1)`
`= -2*1+(-1)`
`=-2+(-1)=-3`
`N(2)=2^3+2+2*2^2`
`N(2)= 8+2+2*4`
`N(2)=8+2+8=10+8=18`
`M(2)=-2*2^2+2`
`M(2)=-2*4+2`
`M(2)=-8+2=-6`
`N(-3)=(-3)^3+(-3)+2*(-3)^2`
`N(-3)= -27+(-3)+2*9`
`N(-3)= (-27)+(-3)+18 = (-30)+18 = -12`
a: M(x)=F(x)-G(x)
\(=x^3-2x^2+2x+1-x^3-x-1=-2x^2+x\)
N(x)=G(x)+H(x)
=x^3+x+1+2x^2-1
=x^3+2x^2+x
b: Bậc, hệ số cao nhất, hệ số tự do của M lần lượt là 2;-2;0
Bậc, hệ số cao nhất, hệ số tự do của N lần lượt là 3;1;0
c: M(x)=-2x^2+x
M(-1)=-2*(-1)^2+(-1)=-2-1=-3
M(2)=-2*2^2+2=-8+2=-6
N(x)=x(x+1)^2
N(2)=2(2+1)^2=18
N(-3)=-3(-3+1)^2=-3*4=-12