Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khẳng định là sai còn nếu đúng thì quy đồng lên làm đảm bảo số lớn khủng
\(\frac{x+1}{99}+\frac{x+2}{99}+\frac{x+3}{99}+\frac{x+4}{99}=-4\)
=>\(\frac{\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)}{99}=-4\)
=> (x+1)+(x+2)+(x+3)+(x+4)=-4.99=-396
=>4x+10=-396
4x=-406
x=-406:4=-101,5
\(A=\frac{92-\frac{1}{9}-\frac{2}{10}-...-\frac{91}{99}-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}}\)
Đặt: \(M=92-\frac{1}{9}-\frac{2}{10}-...-\frac{91}{99}-\frac{92}{100}\)
Tách 92 thành tổng của 92 số 1.
\(M=1-\frac{1}{9}+1-\frac{2}{10}+...+1-\frac{91}{99}+1-\frac{92}{100}\)
\(M=\frac{8}{9}+\frac{8}{10}+...+\frac{8}{99}+\frac{8}{100}\)
\(M=\frac{40}{45}+\frac{40}{50}+...+\frac{40}{495}+\frac{40}{500}\)
Thay M vào A:
\(\Rightarrow A=\frac{\frac{40}{45}+\frac{40}{50}+...+\frac{40}{495}+\frac{40}{500}}{\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}}\)
\(\Rightarrow A=\frac{40\cdot\left(\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}\right)}{\left(\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}\right)}\)
\(\Rightarrow A=40\)
PP/ss: Tớ ko chắc đâu :)))
Ta có 51/2.52/2...100/2
= 1.2.3....100/1.2...50.2.2...2 (nhân cả tử và mẫu với 1.2.3...50)
= 1.2.3...100/(1.2)(2.2)(3.2)...(50.2)
= 1.2.3...100/2.4.6...100
= 1.3.5...99 => đpcm nhớ giữ lời hứa đấy
\(2.x=\frac{1+2+3+...+9}{1-2+3-4+5-6+7-8+9}+\frac{25.150-60.5+20.75}{1+2+3+...+99}\)
\(2.x=\frac{\left(9+1\right).9:2}{\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+9}+\frac{2.3.5^2.\left(5^2-2+2.5\right)}{\left(1+99\right).99:2}\)
\(2.x=\frac{45}{\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+9}+\frac{2.3.5^2.33}{100.99.\frac{1}{2}}\)
\(2x=\frac{45}{5}+\frac{50.99}{50.2.99.\frac{1}{2}}=9+\frac{1}{2.\frac{1}{2}}=9+1=10\)
=> 2x = 10
x = 5
x(1/2+1/6+1/12+...+1/99)=0
x=0(vì các số hang trong ngoặc đều lớn hơn 0 nên tổng của chúng lớn hơn 0)
\(\frac{x}{2}\)+\(\frac{x}{6}\)+\(\frac{x}{12}\)+\(\frac{x}{20}\)+...+\(\frac{x}{99}\)=0
=> x(\(\frac{1}{2}\)+\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+...+\(\frac{1}{99}\))=0
Vì \(\frac{1}{2}\)+\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+...+\(\frac{1}{99}\)\(\ne\)0
nên x =0
Vậy x=0
phương trình này nhìn từ đầu cũng bik vô nghiệm ko có x
\(\frac{x+1}{99}+\frac{x+2}{99}=\frac{x+10}{99}+\frac{x+20}{99}\)
Nhân 2 vế cho 99 ta được:
\(99.\left(\frac{x+1}{99}+\frac{x+2}{99}\right)=99.\left(\frac{x+10}{99}+\frac{x+20}{99}\right)\)
=>x+1+x+2=x+10+x+20
=>2x+3=2x+30
=>0x=27 (vô lí)
Vậy ko tìm dc x