K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

Câu hỏi của Đỗ Văn Hoài Tuân - Toán lớp 8 - Học toán với OnlineMath

6 tháng 11 2017

\(pt\Leftrightarrow\frac{xa-a^2+xb-b^2+xc-c^2}{abc}=\frac{2\left(ab+bc+ca\right)}{abc}\Rightarrow x\left(a+b+c\right)-\left(a+b+c\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=x\\a+b+c=0\end{cases}}\)

27 tháng 3 2020

Cách này của mình là suy đoán thui nha

Từ HPT trên: \(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=\frac{x}{a-p}+\frac{y}{b-p}+\frac{z}{c-p}\)

\(\Leftrightarrow\left(p-q\right)\left[\frac{x}{\left(a-p\right)\left(a-q\right)}+\frac{y}{\left(b-p\right)\left(b-q\right)}+\frac{z}{\left(c-q\right)\left(c-p\right)}\right]=0\)

Chia TH:

TH1:p=q

Tương tự p=r thì cũng thu về p=q=r

TH2: nguyên cái trong ngoặc vuông

Tương đương với: \(ax+by+cz=r\left(x+y+z\right)\)

Tương tự: \(\hept{\begin{cases}ax+by+cz=p\left(x+y+z\right)\\ax+by+cz=q\left(x+y+z\right)\end{cases}}\)

Cũng thu đc p=q=r

Do đó từ 2 TH cũng thu về PT:

\(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=1\)

Rồi vậy không biết làm tiếp :D

27 tháng 3 2020

À, xin lỗi, mình đánh bị thiếu điều kiện, mình sửa lại rồi đó

28 tháng 9 2016

Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) ta có 

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)

28 tháng 9 2016

Bài 1. Đặt \(a=\sqrt{x+3},b=\sqrt{x+7}\)

\(\Rightarrow a.b+6=3a+2b\) và \(b^2-a^2=4\)

Từ đó tính được a và b

Bài 2. \(\frac{2x-1}{x^2}+\frac{y-1}{y^2}+\frac{6z-9}{z^2}=\frac{9}{4}\)

\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}+\frac{1}{y}-\frac{1}{y^2}+\frac{6}{z}-\frac{9}{z^2}-\frac{9}{4}=0\)

Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\)

Ta có \(2a-a^2+b-b^2+6c-9c^2-\frac{9}{4}=0\)

\(\Leftrightarrow-\left(a^2-2a+1\right)-\left(b^2-b+\frac{1}{4}\right)-\left(9c^2-6c+1\right)=0\)

\(\Leftrightarrow-\left(a-1\right)^2-\left(b-\frac{1}{2}\right)^2-\left(3c-1\right)^2=0\)

Áp dụng tính chất bất đẳng thức suy ra a = 1 , b = 1/2 , c = 1/3

Rồi từ đó tìm được x,y,z

2 tháng 2 2022

c) Có \(P=\frac{ax+b}{x^2+1}=-1+\frac{x^2+ax+b+1}{x^2+1}\)

\(P=\frac{ax+b}{x^2+1}=4-\frac{4x^2-ax-b+4}{x^2+1}\)

Để Min P = 1 và Max P = 4 thì 

\(\hept{\begin{cases}x^2+ax+b+1=\left(x+c\right)^2\\4x^2-ax-b+4=\left(2x+d\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\left(a-2c\right)+\left(b+1-c^2\right)=0\left(1\right)\\x\left(-a-4d\right)+\left(-b+4-d^2\right)=0\left(2\right)\end{cases}}\)

(1) = 0 khi \(\hept{\begin{cases}a=2c\\b=c^2-1\end{cases}}\)(3) 

(2) = 0 khi \(\hept{\begin{cases}a=-4d\\b=4-d^2\end{cases}}\)(4) 

Từ (3) (4) => d = 1 ; c = -2 ; b = 3 ; a = -4

Vậy \(P=\frac{-4x+3}{x^2+1}\)

3 tháng 2 2022

ĐK \(x\ge y\)

Đặt \(\sqrt{x+y}=a;\sqrt{x-y}=b\left(a;b\ge0\right)\) 

HPT <=> \(\hept{\begin{cases}a^4+b^4=82\\a-2b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2b+1\right)^4+b^4=82\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}17b^4+32b^3+24b^2+8b-81=0\\a=2b+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}17b^4-17b^3+49^3-49b^2+73b^2-73b+81b-81=0\\a=2b+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(b-1\right)\left(17b^3+49b^2+73b+81\right)=0\left(1\right)\\a=2b+1\end{cases}}\)

Giải (1) ; kết hợp điều kiện => b = 1

=> Hệ lúc đó trở thành \(\hept{\begin{cases}b=1\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+y}=3\\\sqrt{x-y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=10\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)

Vậy hệ có 1 nghiệm duy nhất (x;y) = (5;4)