Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.
Xét \(x>y>z\)
\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)
\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)
\(\Rightarrow x=y=z\)'
\(\Rightarrow x+\frac{1}{x}=2\)
\(\Leftrightarrow x=1\)
\(x+y+z=a\Rightarrow\left(x+y+z\right)^2=a^2\Rightarrow xy+yz+zx=\frac{a^2-b}{2}\\ \)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{c}\Rightarrow xyz=\frac{\left(a^2-b\right)c}{2}\)
Ta có
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-\left(xy+yz+zx\right)\right)\)
\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-\left(xy+yz+xz\right)\right)+3xyz\)
\(=a\left(b-\frac{a^2-b}{2}\right)+3\frac{\left(a^2-b\right)c}{2}\)
Cách này của mình là suy đoán thui nha
Từ HPT trên: \(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=\frac{x}{a-p}+\frac{y}{b-p}+\frac{z}{c-p}\)
\(\Leftrightarrow\left(p-q\right)\left[\frac{x}{\left(a-p\right)\left(a-q\right)}+\frac{y}{\left(b-p\right)\left(b-q\right)}+\frac{z}{\left(c-q\right)\left(c-p\right)}\right]=0\)
Chia TH:
TH1:p=q
Tương tự p=r thì cũng thu về p=q=r
TH2: nguyên cái trong ngoặc vuông
Tương đương với: \(ax+by+cz=r\left(x+y+z\right)\)
Tương tự: \(\hept{\begin{cases}ax+by+cz=p\left(x+y+z\right)\\ax+by+cz=q\left(x+y+z\right)\end{cases}}\)
Cũng thu đc p=q=r
Do đó từ 2 TH cũng thu về PT:
\(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=1\)
Rồi vậy không biết làm tiếp :D
À, xin lỗi, mình đánh bị thiếu điều kiện, mình sửa lại rồi đó