K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

Ta xét 2 phân thức \(\frac{a^2}{a^2-100a+5000}\)và \(\frac{\left(100-a\right)^2}{\left(100-a\right)^2-100\left(100-a\right)+5000}\)(với \(a\in N\)và \(1\le a\le99\)).

Xét hiệu 2 mẫu: \(a^2-100a+5000-\left(100-a\right)^2+100\left(100-a\right)-5000\)

\(=a^2-100a-100^2+200a-a^2+100^2-100a=0.\)

Do đó 2 mẫu bằng nhau và \(\frac{a^2}{a^2-100a+5000}+\frac{\left(100-a\right)^2}{\left(100-a\right)^2-100\left(100-a\right)+5000}\)

\(=\frac{a^2+\left(100-a\right)^2}{a^2-100a+5000}=\frac{2a^2-200a+100^2}{a^2-100a+5000}=2\)

Thay a = 1, 2, 3, ..., 49 ta có:

\(\left(\frac{1^2}{1^2-100+5000}+\frac{99^2}{99^2-9900+5000}\right)+\left(\frac{2^2}{2^2-200+5000}+\frac{98^2}{98^2-9800+5000}\right)+...+\left(\frac{49^2}{49^2-4900+5000}+\frac{51^2}{51^2-5100+5000}\right)+\frac{50^2}{50^2-5000+5000}\)

\(=2.49+1=99\)

3 tháng 8 2016

lấy cái tên NARUTO ở đâu mà hay ghê (ở trong BB phải ko)

17 tháng 2 2016

Hơi khó nhìn nha

17 tháng 2 2016

mk nghĩ thế này: xét k E N* ta có:

(100-k)2 - (100-k).100+5000 

= 1002 - 2.100.k +k2 - 1002 + 100k+ 5000

= k2 - 100k + 5000

lần lượt thay k = 1;2;3;...;99 ta có

12 - 100+ 5000 = 992 - 9900+ 5000

22 - 200+ 5000 = 982 - 9800+ 500

...

992 - 9900+ 5000 = 12 - 100 + 5000

ta có: 2A = \(\frac{1^2+99^2}{1^2-100+5000}+\frac{2^2+98^2}{2^2-200+5000}+...+\frac{99^2+1^2}{99^2-9900+5000}\)

mặt khác k2 + (100-k)2 = k3 + 1002 - 2.100k+ k2 = 2(k2 - 100k + 5000)

do đó \(\frac{k^2+\left(100-k\right)^2}{k^2-100k+5000}=2\)

=> 2A = 2+2+2+...+2 ( có 99 số hạng là 2)

do đó A= \(\frac{2.99}{2}=99\)

duyệt đi

11 tháng 11 2017

Ta thấy đc quy luật:

\(\frac{2^2-1^2}{2^2}=\frac{2+1}{2+2}=\frac{3}{4}\)

\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}=\frac{6+2}{6+3}=\frac{8}{9}\)

\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}+\frac{4^2-3^2}{12^2}=\frac{12+3}{12+4}=\frac{15}{16}\)

Nên:

\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}+\frac{4^2-3^2}{12^2}+...+\frac{100^2-99^2}{9900^2}=\frac{9900+99}{9900+100}=\frac{9999}{10000}\)

Hay A<1(đpcm)

24 tháng 4 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(\frac{1}{2^2}>\frac{1}{2.3}\)

\(\frac{1}{3^2}>\frac{1}{3.4}\)

\(\frac{1}{4^2}>\frac{1}{4.5}\)

\(............\)

\(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)

\(\Rightarrow\)\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow\)\(A>\frac{1}{2}-\frac{1}{101}\)

\(\Rightarrow\)\(A>\frac{99}{202}\) \(\left(1\right)\)

Lại có : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(............\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow\)\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\)\(A< 1-\frac{1}{100}\)

\(\Rightarrow\)\(A< \frac{99}{100}\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(\frac{99}{202}< A< \frac{99}{100}\) ( đpcm ) 

Vậy \(\frac{99}{202}< A< \frac{99}{100}\)

Chúc bạn học tốt ~