Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+....+\frac{1}{2010}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+...+\left(\frac{1}{2010}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}\right)}\)
\(A=\frac{1}{2011}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+...+\frac{1}{2010}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\left(1+1+1+...+1\right)+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{1+\left(1+\frac{2009}{2}\right)+\left(1+\frac{2008}{3}\right)+...+\left(1+\frac{1}{2010}\right)}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2011.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\right)}\)
\(\Rightarrow A=\frac{1}{2011}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+....+\left(\frac{1}{2010}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+....+\frac{2011}{2010}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\right)}\)
\(=\frac{1}{2011}\)
\(A=-\frac{1}{2010}-\left(\frac{1}{2010.2009}+\frac{1}{2009.2008}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(A=-\frac{1}{2010}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\right)\)
\(A=-\frac{1}{2010}-1+\frac{1}{2010}=-1\)
\(A=-\frac{1}{2010}-\frac{1}{2010.2009}-\frac{1}{2009.2008}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=-\left(\frac{1}{2010}+\frac{1}{2010.2009}+\frac{1}{2009.2008}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(A=-\left(\frac{1}{2010}+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2008}-\frac{1}{2009}+...+\frac{1}{2}-\frac{1}{3}+1-\frac{1}{2}\right)\)
\(A=-1\)