Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì (d) có hệ số góc là -2 nên a=-2
=>y=-2x+b
Thay x=0 và y=0 vào (d), ta được:
b-2*0=0
=>b=0
b: Vì (d) đi qua A(2;0) và B(0;-3) nên ta co:
2a+b=0 và 0a+b=-3
=>b=-3; 2a=-b=3
=>a=3/2; b=-3
\(\left\{{}\begin{matrix}a\cdot0+b=3\\-2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\a=\dfrac{3}{2}\end{matrix}\right.\)
Đồ thị hàm số \(y=ax+b\) cắt trục hoành tại điểm \(A\left(-\frac{b}{a};0\right)\) và cắt trục tung tại điểm \(B\left(0;b\right)\).
Từ đó ta suy ra:
\(\hept{\begin{cases}-\frac{b}{a}=4\\b=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-\frac{3}{4}\\b=3\end{cases}}\).
ptđt y=ax+b :
cắt trục hoành tại đểm có hoành độ = 4 ==>ta dc hàm số 0=a*4+b
<==> -4a=b==>a= -b/4 (*)
cắt trục tung tại điểm có tung độ = 3 ==>ta dc hs 3=0a+b
<==>b=3 (1)
thay (1) vào (*) ta dc a=-3/4
vậy hs cần tìm y= -3/4x + 3