K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

a ) 5 x 2 + 2 x = 4 − x ⇔ 5 x 2 + 2 x + x − 4 = 0 ⇔ 5 x 2 + 3 x − 4 = 0

Phương trình bậc hai trên có a = 5; b = 3; c = -4.

b)

3 5 x 2 + 2 x − 7 = 3 x + 1 2 ⇔ 3 5 x 2 + 2 x − 3 x − 7 − 1 2 = 0 ⇔ 3 5 x 2 − x − 15 2 = 0

c)

2 x 2 + x − 3 = x ⋅ 3 + 1 ⇔ 2 x 2 + x − x ⋅ 3 − 3 − 1 = 0 ⇔ 2 x 2 + x ⋅ ( 1 − 3 ) − ( 3 + 1 ) = 0

Phương trình bậc hai trên có a = 2; b = 1 - √3; c = - (√3 + 1).

d)

2 x 2 + m 2 = 2 ( m − 1 ) ⋅ x ⇔ 2 x 2 − 2 ( m − 1 ) ⋅ x + m 2 = 0

Phương trình bậc hai trên có a = 2; b = -2(m – 1);  c   =   m 2

Kiến thức áp dụng

Phương trình bậc hai một ẩn là phương trình có dạng: ax2 + bx + c = 0

trong đó x được gọi là ẩn; a, b, c là các hệ số và a ≠ 0.

4 tháng 4 2017

a) 5x2 + 2x = 4 – x ⇔ 5x2 + 3x – 4 = 0; a = 5, b = 3, c = -4

b) x2 + 2x – 7 = 3x + x2 – x - = 0, a = , b = -1, c = -

c) 2x2 + x - √3 = √3 . x + 1 ⇔ 2x2 + (1 - √3)x – 1 - √3 = 0

Với a = 2, b = 1 - √3, c = -1 - √3

d) 2x2 + m2 = 2(m – 1)x ⇔ 2x2 - 2(m – 1)x + m2 = 0; a = 2, b = - 2(m – 1), c = m2



AH
Akai Haruma
Giáo viên
1 tháng 3 2019

Lời giải:

a)

\(3x^2-5x+1=2x-3\)

\(\Leftrightarrow 3x^2-5x+1-2x+3=0\)

\(\Leftrightarrow 3x^2-7x+4=0\) (\(a=3; b=-7; c=4)\)

b)

\(\frac{3}{5}x^2-4x-3=3x+\frac{1}{3}\)

\(\Leftrightarrow \frac{3}{5}x^2-4x-3-3x-\frac{1}{3}=0\)

\(\Leftrightarrow \frac{3}{5}x^2-7x-\frac{10}{3}=0(a=\frac{3}{5};b=-7; c=\frac{-10}{3})\)

c)

\(\Leftrightarrow -\sqrt{3}x^2+x-5-\sqrt{3}x-\sqrt{2}=0\)

\(\Leftrightarrow -\sqrt{3}x^2+(1-\sqrt{3})x-(5+\sqrt{2})=0\)

(\(a=-\sqrt{3}; b=1-\sqrt{3}; c=-(5+\sqrt{2}))\)

d)

\(\Leftrightarrow x^2-5(m+1)x+m^2-2=0\)

(\(a=1;b=-5(m+1); c=m^2-2)\)

a: \(\Leftrightarrow4x^2-3x+7=0\)

a=4; b=-3; c=7

b: \(\Leftrightarrow\sqrt{5}x^2-x^2+5x-3-3x+4=0\)

\(\Leftrightarrow x^2\cdot\left(\sqrt{5}-1\right)+2x+1=0\)

\(a=\sqrt{5}-1;b=2;c=1\)

c: \(\Leftrightarrow mx^2-x^2-3x+mx+5=0\)

\(\Leftrightarrow x^2\left(m-1\right)+x\left(m-3\right)+5=0\)

a=m-1; b=m-3; c=5

d: \(\Leftrightarrow m^2x^2-x^2+x+m-mx-m-2=0\)

\(\Leftrightarrow x^2\left(m^2-1\right)+x\left(1-m\right)-2=0\)

\(a=m^2-1;b=1-m;c=-2\)

27 tháng 2 2019

2x2 + x - √3 = x.√3 + 1

⇔ 2x2 + x - x.√3 - √3 – 1 = 0

⇔ 2x2 + x.(1 - √3) – (√3 + 1) = 0

Phương trình bậc hai trên có a = 2; b = 1 - √3; c = - (√3 + 1).

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

a.

ĐKXĐ: $x\geq 0; y\geq 1$

PT $\Leftrightarrow (x-4\sqrt{x}+4)+(y-1-6\sqrt{y-1}+9)=0$
$\Leftrightarrow (\sqrt{x}-2)^2+(\sqrt{y-1}-3)^2=0$
Vì $(\sqrt{x}-2)^2; (\sqrt{y-1}-3)^2\geq 0$ với mọi $x\geq 0; y\geq 1$ nên để tổng của chúng bằng $0$ thì:

$\sqrt{x}-2=\sqrt{y-1}-3=0$

$\Leftrightarrow x=4; y=10$

 

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

b.

ĐKXĐ: $x\geq -1; y\geq -2; z\geq -3$
PT $\Leftrightarrow x+y+z+35-4\sqrt{x+1}-6\sqrt{y+2}-8\sqrt{z+3}=0$

$\Leftrightarrow [(x+1)-4\sqrt{x+1}+4]+[(y+2)-6\sqrt{y+2}+9]+[(z+3)-8\sqrt{z+3}+16]=0$

$\Leftrightarrow (\sqrt{x+1}-2)^2+(\sqrt{y+2}-3)^2+(\sqrt{z+3}-4)^2=0$
$\Rightarrow \sqrt{x+1}-2=\sqrt{y+2}-3=\sqrt{z+3}-4=0$
$\Rightarrow x=3; y=7; z=13$

Câu 1: Cho hai số thực a,b thỏa mãn điều kiện ab=1,a+b khác 0. Tính giá trị biểu thức: P=1/(a+b)^3(1/a^3+1/b^3)+3/(a+b)^4(1/a^2+1/b^2)+6/(a+b)^5(1/a+1/b) Câu 2: a) Giải phương trình:2x^2+x+3=3x căn(x+3) b) Chứng minh rằng abc(a^3-b^3)(b^3-c^3)(c^3-a^3) chia hết cho 7 với mọi số nguyên a,b,c. Câu 3: Cho hai số dương a,b thỏa mãn điều kiện a+b<=1. Chứng minh rằng:a^2-3/(4a)-a/b<=-9/4 Câu 4: Cho phương trình x^2-2(m-2)x+m^2-3m+3=0(m là tham số)....
Đọc tiếp

Câu 1: Cho hai số thực a,b thỏa mãn điều kiện ab=1,a+b khác 0. Tính giá trị biểu thức:
P=1/(a+b)^3(1/a^3+1/b^3)+3/(a+b)^4(1/a^2+1/b^2)+6/(a+b)^5(1/a+1/b)
Câu 2:
a) Giải phương trình:2x^2+x+3=3x căn(x+3)
b) Chứng minh rằng abc(a^3-b^3)(b^3-c^3)(c^3-a^3) chia hết cho 7 với mọi số nguyên a,b,c.
Câu 3: Cho hai số dương a,b thỏa mãn điều kiện a+b<=1. Chứng minh rằng:a^2-3/(4a)-a/b<=-9/4
Câu 4: Cho phương trình x^2-2(m-2)x+m^2-3m+3=0(m là tham số). Tìm m để phương trình có hai nghiệm x_1 và x_2 sao cho 3x_1.x_2-x_1^2-x_2^2-5=0
Câu 5: Giải hệ phương trình:
x+y=-6, căn((y+2)/(2x-1))+căn((2x-1)/(y+2))=2
Câu 6: Tìm nghiệm nguyên của phương trình:
3x^2-2y^2-5xy+x-2y-7=0
Câu 7: Cho x,y là các số thực dương thay đổi thỏa mãn điều kiện x+y<=1. Tìm min của P=(x^2+1/4y^2)(y^2+1/4x^2)
Câu 8: Giải phương trình và hệ phương trình:
a) (x^2-9)căn(2-x)=x(x^2-9)
b) (x^2+4y^2)^2-4(x^2+4y^2)=5,3x^2+2y^2=5
Câu 9: Cho phương trình (x-2m)(x+m-3)/(x-1)=0.Tìm m để x_1^2+x_2^2-5x_1.x_2=14m^2-30m+4
Câu 10: Chứng minh rằng với mọi số nguyên n>=1 ta luôn có:1/ căn(n+1)-căn(n)>=2 căn n

@Akai Haruma

1
15 tháng 6 2018

Ai ra tay giúp em với ạ.