K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{3}{4}B=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+\left(\dfrac{3}{4}\right)^3-....-\left(\dfrac{3}{4}\right)^{2024}+\left(\dfrac{3}{4}\right)^{2025}\)

=>\(\dfrac{7}{4}B=\left(\dfrac{3}{4}\right)^{2025}+1\)

=>\(B\cdot\dfrac{7}{4}=\dfrac{3^{2025}+4^{2025}}{4^{2025}}\)

=>\(B=\dfrac{3^{2025}+4^{2025}}{4^{2024}\cdot7}\)

16 tháng 4 2023

=> 4S = 1 + 2/4 + 3/4^2 +...+ 2023/4^2022

=> 4S-S = 1 + (2/4-1/4) + (3/4^2 - 2/4^2) +...+ (2023/4^2022 - 2022/4^2022) - 2023/4^2023

=> 3S = 1 + 1/4 + 1/4^2 +...+ 1/4^2022 - 2023/4^2023

=> 12S = 4 + 1 + 1/4 +... + 1/4^2021 - 2023/4^2022

=> 12S - 3S = 4 + (1-1) + (1/4-1/4) +... + (1/4^2021 - 1/4^2021)  - 1/4^2022 - 2023/4^2022 + 2023/4^2023

=> 9S = 4 -  1/4^2022 - 2023/4^2022 + 2023/4^2023

= 4- 2024/4^2022 + 2023/4^2023

Do 2024/4^2022 > 2024/4^2023 > 2023/4^2023 nên - 2024/4^2022 + 2023/4^2023 < 0

=> 9S < 4 < 9/2

=> S < 1/2 (đpcm)

16 tháng 4 2023

Ta có S = \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\)

4S = \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\)

4S - S = ( \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\) ) - ( \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\))

3S = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}-\dfrac{2023}{4^{2023}}\)

Đặt A = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\)

4A = 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)

4A - A = ( 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)) - ( 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\))

3A = 4 - \(\dfrac{1}{4^{2022}}\)

A = ( 4 - \(\dfrac{1}{4^{2022}}\)) : 3 = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\)

⇒ 3S = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)

S = ( \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)) : 3 = \(\dfrac{4}{9}-\dfrac{1}{4^{2022}\cdot3^2}-\dfrac{1}{4^{2023}\cdot3}< \dfrac{4}{9}< \dfrac{1}{2}\)

Vậy S < \(\dfrac{1}{2}\)

8 tháng 2 2023

\(1:\dfrac{2}{3}:\dfrac{3}{4}:\dfrac{4}{5}:...:\dfrac{2024}{2025}\)

\(1\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{2025}{2024}=\dfrac{2025}{2}\)

5 tháng 5 2022

`a)1/2 . [-3]/4 . [-5]/8 . [-8]/9=[1. (-3).(-5).(-8)]/[2.4.8.3.3]=[-5]/[2.4.3]=[-5]/24`

`b)(2/[1.3]+2/[3.5]+2/[5.7]).([10.13]/3-[2^2]/3-[5^3]/3)`

`=(1-1/3+1/3-1/5+1/5-1/7).[10.13-2^2-5^3]/3`

`=(1-1/7).[130-4-125]/3`

`=6/7 . 1/3 = 2/7`

____________________________________________________

`8/9+1/9 . 2/9+1/9 . 7/9`

`=8/9+1/9.(2/9+7/9)`

`=8/9+1/9 . 9/9`

`=8/9+1/9=9/9=1`

a) \(\dfrac{1}{2}\cdot\dfrac{-3}{4}\cdot\dfrac{-5}{8}\cdot\dfrac{-8}{9}\)

\(=\dfrac{1\cdot\left(-3\right)\cdot\left(-5\right)\cdot\left(-8\right)}{2\cdot4\cdot8\cdot9}\)

\(=-\dfrac{5}{24}\)

 

b) \(\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}\right)\cdot\left(\dfrac{10\cdot13}{3}-\dfrac{2^2}{3}-\dfrac{5^3}{3}\right)\)

\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}\right)\cdot\left(\dfrac{130}{3}-\dfrac{4}{3}-\dfrac{125}{3}\right)\)

\(=\left(1-\dfrac{1}{7}\right)\cdot\dfrac{1}{3}\)

\(=\dfrac{6}{7}\cdot\dfrac{1}{3}\)

\(=\dfrac{2}{7}\)

 

\(\dfrac{8}{9}+\dfrac{1}{9}\cdot\dfrac{2}{9}+\dfrac{1}{9}\cdot\dfrac{7}{9}\)

\(=\dfrac{8}{9}+\dfrac{2}{81}+\dfrac{7}{81}\)

\(=\dfrac{72}{81}+\dfrac{2}{81}+\dfrac{7}{81}\)

\(=1\)

A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\)

\(1-\dfrac{1}{2023}\)

\(\dfrac{2022}{2023}\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2023

Yêu cầu đề bài là gì vậy bạn?