Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{4}B=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+\left(\dfrac{3}{4}\right)^3-....-\left(\dfrac{3}{4}\right)^{2024}+\left(\dfrac{3}{4}\right)^{2025}\)
=>\(\dfrac{7}{4}B=\left(\dfrac{3}{4}\right)^{2025}+1\)
=>\(B\cdot\dfrac{7}{4}=\dfrac{3^{2025}+4^{2025}}{4^{2025}}\)
=>\(B=\dfrac{3^{2025}+4^{2025}}{4^{2024}\cdot7}\)
B = \(1-\dfrac{1}{2025}\) \(A=1-\dfrac{1}{2024}\)
Vì \(\dfrac{1}{2025}< \dfrac{1}{2024}\)
Nên B>A
Ta có :
\(\dfrac{2023}{2024}\)=\(\dfrac{2024-1}{2024}\)=\(\dfrac{2024}{2024}\)-\(\dfrac{1}{2024}\)=1-\(\dfrac{1}{2024}\)
\(\dfrac{2024}{2025}\)=\(\dfrac{2025-1}{2025}\)=\(\dfrac{2025}{2025}\)-\(\dfrac{1}{2025}\)=1=\(\dfrac{1}{2025}\)
Ta thấy: \(\dfrac{1}{2024}\) lớn hơn \(\dfrac{1}{2025}\)
Nên : \(\dfrac{2023}{2024}\) lớn hơn \(\dfrac{2024}{2025}\)
⇒A lớn hơn B
Chúng ta có thể sử dụng công thức tổng của dãy số mũ ba để tính tổng này:
1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2
Áp dụng công thức này vào đề bài, ta có:
M = (1^3 + 2^3 + 3^3 + ... + 2024^3) = (1 + 2 + 3 + ... + 2024)^2
Do đó, M là bình phương của một số nguyên, vì tổng các số nguyên từ 1 đến 2024 là một số nguyên. Do đó, ta kết luận rằng M thuộc tập số nguyên.
\(a.\dfrac{2}{3}+\dfrac{4}{3}:\dfrac{-2}{3}=\dfrac{2}{3}+\left(-2\right)=\dfrac{-4}{3}\)
\(b.3\dfrac{4}{5}-\left(2\dfrac{1}{4}+1\dfrac{4}{5}\right)\\ =3\dfrac{4}{5}-2\dfrac{1}{4}-1\dfrac{4}{5}\\ =\left(3\dfrac{4}{5}-1\dfrac{4}{5}\right)-2\dfrac{1}{4}\\ =2-2\dfrac{1}{4}=\dfrac{1}{4}\)
\(c.\dfrac{-3}{5}.\dfrac{4}{7}+\dfrac{3}{7}.\dfrac{-3}{5}+\dfrac{3}{5}\\ =\dfrac{-3}{5}\left(\dfrac{4}{7}+\dfrac{3}{7}\right)+\dfrac{3}{5}\\ =\dfrac{-3}{5}+\dfrac{3}{5}=0\)
a) \(\dfrac{2}{5}+\dfrac{4}{3}:\dfrac{-2}{3}\)
\(=\dfrac{2}{5}+\dfrac{4}{3}.\dfrac{-3}{2}\)
\(=\dfrac{2}{5}+-2\)
\(=\dfrac{2}{5}+\dfrac{-10}{5}\)
\(=\dfrac{-8}{5}\)
1, \(\dfrac{3}{4}.\left(\dfrac{2}{5}-\dfrac{1}{15}\right)+\dfrac{3}{4}=\dfrac{3}{4}.\left(\dfrac{2}{5}-\dfrac{1}{15}+1\right)\)
\(=\dfrac{3}{4}.\dfrac{6-1+15}{15}=\dfrac{3}{4}.\dfrac{20}{15}=\dfrac{3}{4}.\dfrac{4}{3}=1\)
2, \(\dfrac{4}{9}.\left(-\dfrac{13}{3}\right)+\dfrac{4}{3}.\dfrac{40}{9}=\dfrac{4}{9}.\left(-\dfrac{13}{3}\right)+\dfrac{4}{9}.\dfrac{40}{3}\)
\(=\dfrac{4}{9}.\left[\left(-\dfrac{13}{3}\right)+\dfrac{40}{3}\right]=\dfrac{4}{9}.9=4\)
3, \(\dfrac{4}{9}-\dfrac{2}{3}.\left(\dfrac{4}{5}+\dfrac{1}{2}\right)=\dfrac{2}{3}\left(\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{1}{2}\right)\)
\(=\dfrac{2}{3}.\dfrac{20-24-15}{30}=\dfrac{2}{3}.\left(-\dfrac{19}{30}\right)=-\dfrac{19}{45}\)
1. \(\dfrac{3}{4}.\left(\dfrac{6}{15}-\dfrac{1}{15}\right)+\dfrac{3}{4}=\dfrac{3}{4}.\dfrac{1}{3}+\dfrac{3}{4}=\dfrac{1}{4}+\dfrac{3}{4}=1\)
\(1:\dfrac{2}{3}:\dfrac{3}{4}:\dfrac{4}{5}:...:\dfrac{2024}{2025}\)
= \(1\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{2025}{2024}=\dfrac{2025}{2}\)