K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2021

\(\dfrac{60}{x}-\dfrac{60}{x+2}=\dfrac{1}{20}\left(đk:x\ne0,x\ne-2\right)\)

\(\Leftrightarrow\dfrac{60x+120-60x}{x\left(x+2\right)}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{120}{x^2+2x}=\dfrac{1}{20}\Leftrightarrow x^2+2x=2400\)

\(\Leftrightarrow\left(x+1\right)^2=2401\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=49\\x+1=-49\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=48\\x=-50\end{matrix}\right.\)(thỏa đk)

Ta có: \(\dfrac{60}{x}-\dfrac{60}{x+2}=\dfrac{1}{20}\)

\(\Leftrightarrow x\left(x+2\right)=1200x+2400-1200x\)

\(\Leftrightarrow x^2+2x-2400=0\)

\(\Delta=2^2-4\cdot1\cdot\left(-2400\right)=9604\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-2-98}{2}=-50\left(nhận\right)\\x_2=\dfrac{-2+98}{2}=48\left(nhận\right)\end{matrix}\right.\)

b: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-1\right)\left(x+2\right)}=\dfrac{-4x^2+11x-2}{\left(x+2\right)\left(x-1\right)}\)

\(\Leftrightarrow x^2+4x+4+4x^2-11x+2=0\)

\(\Leftrightarrow5x^2-7x+6=0\)

hay \(x\in\varnothing\)

c: \(\Leftrightarrow\left(3x^2+2\right)^2-5x\left(3x^2+2\right)=0\)

=>3x^2-5x+2=0

=>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

21 tháng 4 2017

\(\dfrac{1}{x}+\dfrac{1}{x+50}=\dfrac{1}{60}\left(x\ne0;x\ne-5\right)\)

\(pt\Leftrightarrow\dfrac{x+50}{x\left(x+50\right)}+\dfrac{x}{x\left(x+50\right)}=\dfrac{1}{60}\)

\(\Leftrightarrow\dfrac{2x+50}{x\left(x+50\right)}=\dfrac{1}{60}\Leftrightarrow x\left(x+50\right)=60\left(2x+50\right)\)

\(\Leftrightarrow x^2+50x=120x+3000\)

\(\Leftrightarrow x^2-70x-3000=0\)

\(\Leftrightarrow x^2-100x+30x-3000=0\)

\(\Leftrightarrow x\left(x-100\right)+30\left(x-100\right)=0\)

\(\Leftrightarrow\left(x+30\right)\left(x-100\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+30=0\\x-100=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-30\\x=100\end{matrix}\right.\)

3 tháng 5 2023

\(\dfrac{100}{x}-\dfrac{100}{x+10}=\dfrac{30}{60}=0,5\left(ĐKXĐ:x\ne0;x\ne-10\right)\\ \Leftrightarrow\dfrac{100\left(x+10\right)-100x}{x\left(x+10\right)}=\dfrac{0,5x\left(x+10\right)}{x\left(x+10\right)}\\ \Leftrightarrow100x-100x+1000=0,5x^2+5x\\ \Leftrightarrow0,5x^2+5x-1000=0\\ \Leftrightarrow0,5x^2-20x+25x-1000=0\\ \Leftrightarrow0,5x.\left(x-40\right)+25.\left(x-40\right)=0\\ \Leftrightarrow\left(0,5x+25\right)\left(x-40\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}0,5x+25=0\\x-40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-50\\x=40\end{matrix}\right.\\ Vậy:S=\left\{-50;40\right\}\)

3 tháng 5 2023

Xem lại mấy dòng quy đồng

Bài 2: 

a: Ta có: \(\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{60}+6\right):2\sqrt{3}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{12}\left(\sqrt{5}+\sqrt{3}\right):2\sqrt{3}\)

\(=2\sqrt{12}:2\sqrt{3}\)

=2

b: Ta có: \(\sqrt{5-\sqrt{21}}-\sqrt{\dfrac{7}{2}}\)

\(=\dfrac{\sqrt{10-2\sqrt{21}}-\sqrt{7}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}-\sqrt{3}-\sqrt{7}}{\sqrt{2}}\)

\(=-\dfrac{\sqrt{6}}{2}\)

a: \(\Leftrightarrow x^2+x+1-3x^2=2x\left(x-1\right)\)

=>-2x^2+x+1-2x^2+2x=0

=>-4x^2+3x+1=0

=>4x^2-3x-1=0

=>4x^2-4x+x-1=0

=>(x-1)(4x+1)=0

=>x=1(loại) hoặc x=-1/4(nhận)

b: \(\Leftrightarrow\dfrac{440}{x-2}-\dfrac{440}{x}=1\)

=>x(x-2)=440x-440x+880

=>x^2-2x-880=0

=>\(x=1\pm\sqrt{881}\)

c: \(\Leftrightarrow\dfrac{x+5+x}{x\left(x+5\right)}=\dfrac{1}{6}\)

=>x^2+5x=6(2x+5)

=>x^2+5x-12x-30=0

=>x^2-7x-30=0

=>(x-10)(x+3)=0

=>x=10 hoặc x=-3

d: =>(x-1)(x+1)-x=2x-1

=>x^2-1-x=2x-1

=>x^2-x-2x=0

=>x(x-3)=0

=>x=0(loại) hoặc x=3(nhận)

AH
Akai Haruma
Giáo viên
4 tháng 11 2017

Lời giải:

PT (1)\(\rightarrow x_1+x_2=\frac{60.3}{4}=45\)

\(\Rightarrow x_2=45-x_1\)

Thay vào pt (2)

\(\frac{60}{x_2}-\frac{60}{x_1}=2\)

\(\Leftrightarrow \frac{60}{45-x_1}-\frac{60}{x_1}=2\)

\(\Leftrightarrow \frac{1}{45-x_1}-\frac{1}{x_1}=\frac{1}{30}\Leftrightarrow \frac{x_1-(45-x_1)}{x_1(45-x_1)}=\frac{1}{30}\)

\(\Leftrightarrow 30(2x_1-45)=x_1(45-x_1)\)

\(\Leftrightarrow x_1^2+15x_1-1350=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=30\rightarrow x_2=15\\x_1=-45\rightarrow x_2=90\end{matrix}\right.\)

(đều thỏa mãn)

Vậy \((x_1,x_2)=(30;15);(-45;90)\)

a: \(=\sqrt{\dfrac{1}{10}}+\sqrt{\dfrac{1}{60}}-\dfrac{2\sqrt{15}}{15}\)

\(=\dfrac{\sqrt{10}}{10}-\dfrac{2\sqrt{15}}{15}+\dfrac{\sqrt{15}}{30}\)

\(=\dfrac{3\sqrt{10}-3\sqrt{15}}{30}=\dfrac{\sqrt{10}-\sqrt{15}}{10}\)

b: \(=\dfrac{\left(\sqrt{5}+\dfrac{1}{2}\cdot2\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)}{2\sqrt{5}}\)

\(=\dfrac{\left(\sqrt{5}+\sqrt{5}-\dfrac{1}{2}\sqrt{5}+\sqrt{5}\right)}{2\sqrt{5}}\)

\(=\dfrac{5}{2}:2=\dfrac{5}{4}\)