K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Đáp án C

Gọi số chiếc nón lá mỗi ngày cơ sở đó làm được là x (chiếc)

Số ngày cơ sở đó dự kiến làm hết 300 chiếc nón lá là: 300/x (ngày)

Sau khi làm tăng thêm 5 chiếc nón lá một ngày thì thời gian cơ sở đó làm hết 300 chiếc nón lá là: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án (ngày).

Theo đề bài ta có phương trình:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy theo dự kiến, mỗi ngày cơ sở đó làm được 20 chiếc nón lá.

19 tháng 3 2020

- Gọi số chiếc nón lá cơ sở đó dự kiến làm trong 1 ngày là x ( chiếc , \(0< x< 300,x\in N\)* )

- Gọi thời gian dự kiến làm xong số nón lá là y ( ngày, \(y>3\) )

- Số chiếc nón dự kiến ban đầu của cơ sở đó là : \(x=\frac{300}{y}\left(I\right)\)

Theo đề bài công nên mỗi ngày cơ sở đó làm ra được nhiều hơn 5 chiếc nón lá so với dự kiến ban đầu,vì vậy cơ sở sản xuất đã hoàn thành 300 chiếc nón lá sớm hơn 3 ngày so với thời gian đã định nên ta có phương trình : \(x+5=\frac{300}{y-3}\left(II\right)\)

- Từ ( I ) và ( II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}x=\frac{300}{y}\\x+5=\frac{300}{y-3}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\\frac{300}{y}+5=\frac{300}{y-3}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\\frac{300+5y}{y}=\frac{300}{y-3}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\300y+5y^2-900-15y=300y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\5y^2-900-15y=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\\left(y-15\right)\left(5y+60\right)=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\\left[{}\begin{matrix}y=15\left(tm\right)\\y=-12\left(vl\right)\end{matrix}\right.\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{300}{15}=20\\y=15\end{matrix}\right.\) ( TM )

Vậy mỗi ngày theo dự kiến cơ sở đó sản xuất được 20 chiếc nón lá .

mn ơi giúp mình với ạ!!!

11 tháng 5 2021

2] cao của hình trụ là h (cm) 
Đk: h > p
Ta có: Sxq = 2πRh 
           Stp = 2πRh + 2πR^2
Theo bài ra ta có:  Stp = 2Sxq 
=> 2πRh + 2πR^2 = 2.2πRh
⇔ 2πR^2 = 2πRh
⇒ h = R = 6 cm
Thể tích V = πR^2.h = π.6^2.6 = 216π (cm3)
Vậy . . .

6 tháng 7 2020

 Gọi số khẩu trang công ti dự định may mỗi ngày là \(x\)(khẩu trang , \(x\in N^∗,x>0\))

       số khẩu trang công ti thực tế may mỗi ngày là \(x+100\)(khảu trang)

Thời gian công ti dự dịnh hoàn thành công việc là \(\frac{6000}{x}\)(ngày)

Thời gian công ti thực tế hoàn thành công việc là \(\frac{6000}{x+100}\)(ngày)

Vì thời gian thực tế hoàn thành sớm hơn 2 ngày so với dự định, ta có phương trình:

\(\frac{6000}{x}-\frac{6000}{x+100}=2\)

\(\Leftrightarrow\frac{6000.\left(x+100\right)}{x.\left(x+100\right)}-\frac{6000x}{x.\left(x+100\right)}=\frac{2x.\left(x+100\right)}{x.\left(x+100\right)}\)

\(\Leftrightarrow6000x+600000-6000x=2x^2+200x\)

\(\Leftrightarrow2x^2+200x-600000=0\)

\(\Leftrightarrow x^2+100x-300000=0\)

\(\Leftrightarrow x^2-500x+600x-300000=0\)

\(\Leftrightarrow x.\left(x-500\right)+600.\left(x-500\right)=0\)

\(\Leftrightarrow\left(x-500\right).\left(x+600\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-500=0\\x+600=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=500\left(TM\right)\\x=-600\left(L\right)\end{cases}}}\)

Vậy số khẩu trang công ti dự định may mỗi ngày là \(500\)khẩu trang 

6 tháng 7 2020

Gọi x là khẩu trang cty may đc mỗi ngày theo dự định \(\left(x\inℕ^∗\right)\)

Sau khi bổ sung thêm công nhân thì mỗi ngày may đc: \(x+100\) ( khẩu trang)

Số ngày để may khẩu trang theo dự định là:\(\frac{6000}{x}\)(ngày)

Số ngày để mày khẩu trang khi bổ sung thêm công nhân là:\(\frac{6000}{x+100}\)(ngày)

Vì hoàn thành sớm hơn 2 ngày so với dự định nên ta có pt:

\(\frac{6000}{x}-\frac{6000}{x+100}=2\)

\(\Rightarrow6000\left(x+100\right)-6000x=2x\left(x+100\right)\)

\(\Rightarrow2x^2+200x-600000=0\)

\(\Rightarrow\orbr{\begin{cases}x=500\left(TM\right)\\x=-600\left(L\right)\end{cases}}\)

Vậy dự đinh mỗi ngày cty mày đc 500 chiếc khẩu trang

Bài 21: Một công nhân dự định làm 150 sản phẩm trong một thời gian nhất định.Sau khi làm được 2h với năng xuất dự kiến ,người đó đã cảI tiến cácthao tác nên đã tăng năng xuất được 2 sản phẩm mỗi giờ và vì vậy đã hoàn thành 150 sản phẩm sớm hơn dự kiến 30 phút. Hãy tính năng xuất dự kiến ban đầu.Bài 22: Một công nhân dự tính làm 72 sản phẩm trong một thời gian đã...
Đọc tiếp

Bài 21: Một công nhân dự định làm 150 sản phẩm trong một thời gian nhất định.Sau khi làm được 2h với năng xuất dự kiến ,người đó đã cảI tiến cácthao tác nên đã tăng năng xuất được 2 sản phẩm mỗi giờ và vì vậy đã hoàn thành 150 sản phẩm sớm hơn dự kiến 30 phút. Hãy tính năng xuất dự kiến ban đầu.

Bài 22: Một công nhân dự tính làm 72 sản phẩm trong một thời gian đã định.Nhưng trong thực tế xí nghiệp lại giao làm 80 sản phẩm. Vì vậy, mặc dù người đó đã làm mỗi giờ thêm 1 sản phẩm song thời gian hoàn thành công việc vẫn tăng so với dự định 12 phút. Tính năng suất dự kiến, biết rằng mỗi giờ người đó làm không quá 20 sản phẩm.

Bài 23: Tháng thứ nhất hai tổ sản xuất được 900 chi tiết máy . Tháng thứ hai tổ I vượt mức 15% và tổ hai vượt mức 10 % so với tháng thứ nhất , vì vậy hai tổ sản xuất được 1010 chi tiết máy Hỏi tháng thứ nhất mỗi tổ sản xuất được bao nhiêu chi tiết máy?

Bài 24: Theo kế hoạch, hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kỹ thuật mới nên tổ I đã vượt mức 18%, tổ II vượt mức 21% , vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ theo kế hoạch

2
27 tháng 6 2021

Bài 21:

Gọi x (sản phẩm/giờ) là năng suất dự kiến ban đầu của người đó \(\left(x\inℕ^∗\right)\)

=> x + 2 (sản phẩm/giờ) là năng suất lúc sau của người đó

Theo bài ta có phương trình sau:

\(\frac{150}{x}-\frac{1}{2}-2=\frac{150-2x}{x+2}\)

\(\Leftrightarrow300\left(x+2\right)-x\left(x+2\right)-4x\left(x+2\right)=2\left(150-2x\right)x\)

\(\Leftrightarrow300x+600-x^2-2x-4x^2-8x=300x-4x^2\)

\(\Leftrightarrow x^2+10x-600=0\)

\(\Leftrightarrow\left(x-20\right)\left(x+30\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\x+30=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-30\left(ktm\right)\end{cases}}\)

Vậy ban đầu năng suất người đó là 20 (sản phẩm/giờ)

27 tháng 6 2021

Bài 22:

Gọi x (sản phẩm/giờ) là năng suất dự kiến của người đó \(\left(x\inℕ^∗;x< 20\right)\)

=> x + 1 (sản phẩm/giờ) là năng suất lúc sau của người đó 

Theo bài ra ta có phương trình:

\(\frac{80}{x+1}-\frac{1}{5}=\frac{72}{x}\)

\(\Leftrightarrow400x-x\left(x+1\right)=360\left(x+1\right)\)

\(\Leftrightarrow400x-x^2-x=360x+360\)

\(\Leftrightarrow x^2-39x+360=0\)

\(\Leftrightarrow\left(x-15\right)\left(x-24\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=24\left(ktm\right)\end{cases}}\)

Vậy năng suất ban đầu là 15 sp/giờ

23 tháng 3 2020

gọi x là số sản phẩm làm 1 ngày theo dự định
3200/x là số ngày làm 3200 sp theo dự định
5+(3200-5x)/(x+40) là số ngày làm xong sản phẩm thực tê
ta có pt
3200/x-3=(5+(3200-5x)/(x+40))

23 tháng 3 2020

xong chị giải pt ra là đc

23 tháng 5 2022

Diện tích lá cần dùng cho một chiếc nón:

\(2(3,14.rl)=2(3,14.35.\dfrac{50}{2})=5495 (cm^2)\)

Vậy diện tích lá cần dùng cho một chiếc nón là \(5495 cm^2\)