Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét A = \(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)
Áp dụng BDT Co-si, ta có:
\(\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\left(\sqrt{x}-3\right).\dfrac{36}{\sqrt{x}-3}}\) = 12
=> A \(\ge15\)
Dấu "=" xảy ra <=> x = 81
gọi x là vận tốc của ô tô
y là vận tốc của xe máy (km/h) (x>y>0)
sau 4h 2 xe gặp nhau nên tổng quãng đường AB bằng:
AB= 4.x+4.y = 4.(x+y) (km)
nên thgian ô tô và xe máy đi hết AB lần lượt là:
\(\dfrac{4\left(x+y\right)}{y}\)(h); \(\dfrac{4\left(x+y\right)}{x}\) (h)
vì ô tô đến sớm hơn xe máy 6h nên ta có pt:
\(\dfrac{4\left(x+y\right)}{y}\)-\(\dfrac{4\left(x+y\right)}{x}\)=6
⇔\(\dfrac{4x+4y}{y}\)-\(\dfrac{4x+4y}{x}\)=6
⇔4.\(\dfrac{x}{y}\) +4-4-\(\dfrac{4y}{x}\)=6
⇔\(\dfrac{x}{y}\)-\(\dfrac{y}{x}\)=\(\dfrac{6}{4}\)=\(\dfrac{3}{2}\)
đặt: t=\(\dfrac{x}{y}\) (t>0)
⇒t-\(\dfrac{1}{t}\)=\(\dfrac{3}{2}\)
⇔t2-\(\dfrac{3}{2}\)t-1=0
⇔(t -2)(t +\(\dfrac{1}{2}\))=0
⇔t=2
⇒\(\dfrac{x}{y}\)=2 ⇒x=2y
⇒AB=4.(x+y)=6x=12y
nên thgian ô tô và xe máy đi hết AB lần lượt là:
\(\dfrac{6x}{x}=6\) (h)\(\dfrac{12y}{y}=12\) (h)
Gọi thời gian xe máy đi hết quãng đường AB là x (h) (x>4)
thời gian xe máy đi hết quãng đường AB là y (h) (y>4)
Trong 1 giờ xe máy đi được \(\dfrac{1}{x}\) (quãng đường)
Trong 1 giờ ô tô đi được \(\dfrac{1}{y}\) (quãng đường)
Trong 1 giờ hai xe đi được \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\left(1\right)\)
Mà thời gian ô tô về đến A sớm hơn xe máy về đến B là 6 giờ nên: \(x-y=6\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\x-y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{x-6}=\dfrac{1}{4}\\y=x-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-14x+24=0\\y=2-6\end{matrix}\right.\)(ĐK:\(x\ne6\)) \(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=6\end{matrix}\right.\)(TM)
Vậy thời gian xe máy đi hết quãng đường AB là 12 giờ
thời gian ô tô đi hết quãng đường AB là 6giờ
-Chúc bạn học tốt-
Bài 5:
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}\approx90^0-37^0=53^0\)
b, Áp dụng HTL: \(S_{AHC}=\dfrac{1}{2}AH\cdot HC=\dfrac{1}{2}\cdot\dfrac{AB\cdot AC}{BC}\cdot\dfrac{AC^2}{BC}=\dfrac{1}{2}\cdot\dfrac{12}{5}\cdot\dfrac{9}{5}=\dfrac{54}{25}\left(cm^2\right)\)
c, Vì AD là p/g nên \(\dfrac{DH}{DB}=\dfrac{AH}{AB}\)
Mà \(AC^2=CH\cdot BC\Leftrightarrow\dfrac{HC}{AC}=\dfrac{AC}{BC}\)
Mà \(AH\cdot BC=AB\cdot AC\Leftrightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\)
Vậy \(\dfrac{DH}{DB}=\dfrac{HC}{AC}\)
A = \(\dfrac{4\sqrt{x}+9}{2\sqrt{x}+1}\)
Mà \(4\sqrt{x}+9>0\)
\(2\sqrt{x}+1>0\)
=> A > 0
A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}\) = \(2+\dfrac{7}{2\sqrt{x}+1}\)
Mà \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)
<=> \(A\le9\)
<=> 0 < A \(\le9\)
Mà A thuộc Z
<=> A \(\in\){1;2;3;4;5;6;7;8;9}
Đến đây bn thay A vào để tìm x nhé
A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}=2+\dfrac{7}{2\sqrt{x}+1}\)
Mà \(2\sqrt{x}+1>0< =>\dfrac{7}{2\sqrt{x}+1}>0\)
<=> A > 2
Có \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)
<=> \(A\le9\)
<=> 2 < A \(\le9\)
Mà A thuộc Z
<=> \(A\in\left\{3;4;5;6;7;8;9\right\}\)
Đến đây bn thay A vào để tìm x nhé
1.2 với \(x\ge0,x\in Z\)
A=\(\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)
*\(\sqrt{x}+2=1=>\sqrt{x}=-1\)(vô lí)
*\(\sqrt{x}+2=-1=>\sqrt{x}=-3\)(vô lí
*\(\sqrt{x}+2=3=>x=1\)(TM)
*\(\sqrt{x}+2=-3=\sqrt{x}=-5\)(vô lí)
vậy x=1 thì A\(\in Z\)
A = \(\dfrac{6\sqrt{x}+8}{3\sqrt{x}+2}=2+\dfrac{4}{3\sqrt{x}+2}\)
Có \(3\sqrt{x}+2>0< =>\dfrac{4}{3\sqrt{x}+2}>0\) <=> A > 2
Có: \(3\sqrt{x}+2\ge2< =>\dfrac{4}{3\sqrt{x}+2}\le2\) <=> A \(\le4\)
<=> 2 < A \(\le4\)
Mà A nguyên
<=> \(\left[{}\begin{matrix}A=3\\A=4\end{matrix}\right.\)
TH1: A = 3
<=> \(\dfrac{4}{3\sqrt{x}+2}=1\)
<=> \(3\sqrt{x}+2=4< =>x=\dfrac{4}{9}\)
TH2: A = 4
<=> \(\dfrac{4}{3\sqrt{x}+2}=2< =>3\sqrt{x}+2=2< =>x=0\)
`5)A=sqrtx+36/(sqrtx-3)`
`A=sqrtx-3+36/(sqrtx-3)+3`
ÁP dụng bđt cosi ta có:
`sqrtx-3+36/(sqrtx-3)>=2sqrt{36}=12`
`=>A>=12+3=15`
Dấu "=" xảy ra khi `sqrtx-3=36/(sqrtx-3)`
`<=>(sqrtx-3)^2=36`
`<=>sqrtx-3=6`
`<=>sqrtx=9`
`<=>x=81`
Không có Max.
\(A=\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)
Theo BĐT Cô Si ta có:
\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\sqrt{x}-3.\dfrac{36}{\sqrt{x}-3}}\)
⇔\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge12\)
⇔\(A\ge12+3\)
⇔\(A\ge15\)
⇒\(Min_A=15\)
Dấu = xảy ra khi và chỉ khi : \(\sqrt{x}-3=\dfrac{36}{\sqrt{x}-3}\)
⇔\(\left(\sqrt{x}-3\right)^2=36\)
⇔\(\sqrt{x}-3=6\)
⇔\(\sqrt{x}=9\)
⇔\(x=81\)