Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : m + n hay \(2x^2-xy-3y^2+1+x^2-2xy+3y^2-1\)
\(m+n=3x^2-3xy\)
m - n hay \(2x^2-xy-3y^2+1-x^2+2xy-3y^2+1\)
\(m-n=x^2+xy-6y^2+2\)
a) N=-2x2+3xy+3x2-3y-1
=-2x2+3x2+3xy-3y-1
=x2+3xy-3y-1
=>M+N=(x2+2xy+y-1)+(x2+3xy-3y-1)
=x2+2xy+y-1+x2+3xy+-3y-1
=x2+x2+2xy+3xy+y-3y-1-1
=2x2+5xy-2y-2
b)M-N= (x2+2xy+y-1)-(x2+3xy-3y-1)
=x2+2xy+y-1-x2-3xy+3y+1
=x2-x2+2xy-3xy+y+3y-1+1
=-xy+4y
\(M=x^2-2xy+y^2\)
\(N=y^2+2xy+x^2+1\)
\(a,M+N=\left(x^2-2xy+y^2\right)+\left(y^2+2xy+x^2+1\right)\)
\(=x^2-2xy+y^2+y^2+2xy+x^2+1\)
\(=\left(x^2+x^2\right)+\left(-2xy+2xy\right)+\left(y^2+y^2\right)+1\)
\(=2x^2+2y^2+1\)
\(b,M-N=\left(x^2-2xy+y^2\right)-\left(y^2+2xy+x^2+1\right)\)
\(=x^2-2xy+y^2-y^2-2xy-x^2-1\)
\(=\left(x^2-x^2\right)+\left(-2xy-2xy\right)+\left(y^2-y^2\right)-1\)
\(=-4xy-1\)
Ta có:
M +N +P = (7x^2y^2 -2xy -5y^3 -y^2 +5x^4) +(-x^2y^2 -4xy +3y^3 -3y^2 +2x^4) +(-3x^2y^2 +6xy +2y^3 +6y^2 +7)
= 7x^2y^2 -2xy -5y^3 -y^2 +5x^4 -x^2y^2 -4xy +3y^3 -3y^2 +2x^4 -3x^2y^2 +6xy +2y^3 +6y^2 +7
= (7x^2y^2 -x^2y2 -3x^2y^2) +(-2xy -4xy +6xy) +(-5y^3 +3y^3 +2y^3) +(-y^2 -3y^2 +6y^2) +(5x^4 +2x^4) + 7
= 3x^2y^2 + 2y^2 + 7x^4 + 7
x^2≥0;y^2≥0⇒3x^2y^2≥0 (1)
y^2≥0⇒2y^2≥0(2)
x4≥0⇒7x4≥0 (3)
7 > 0 (4)
Từ (1), (2), (3) và (4) => 3x^2y^2+2y^2+7x^4+7≥0
Vậy ít nhất 1 trong 3 đa thức M, N, P có giá trị dương với mọi x, y
M = 7x2y2 - 2xy - 5y3 - y2 + 5x4
N = -x2y2 - 4xy + 3y3 - 3y2 + 2x4
P = -3x2y2 + 6xy + 2y3 + 6y2 + 7
M+N+P = 7x2y2 - 2xy - 5y3 - y2 + 5x4 + (-x2y2 - 4xy + 3y3 - 3y2 + 2x4) + (-3x2y2 + 6xy + 2y3 + 6y2 + 7)
M+N+P = 7x2y2 - 2xy - 5y3 - y2 + 5x4 - x2y2 - 4xy + 3y3 - 3y2 + 2x4 - 3x2y2 + 6xy + 2y3 + 6y2 + 7
M+N+P = (7x2y2 - x2y2 - 3x2y2) - (2xy + 4xy - 6xy) - (5y3 - 3y3 - 2y3) - ( y2 + 3y2 - 6y2 ) + ( 5x4 + 2x4 ) + 7
M+N+P = 3x2y2 + 2y2 + 7x4 + 7
Ta có : M+N+P = 3x2y2 + 2y2 + 7x4 + 7
Vì 3x2y2 + 2y2 + 7x4 \(\ge\) 0
7 > 0
=> 3x2y2 + 2y2 + 7x4 + 7 > 0
=> M+N+P > 0 với mọi x,y
=> Ít nhất 1 trong 3 đa thức đã cho có giá trị dương với mọi x,y
Ta có:
M +N +P = (7x2y2 -2xy -5y3 -y2 +5x4) +(-x2y2 -4xy +3y3 -3y2 +2x4) +(-3x2y2 +6xy +2y3 +6y2 +7)
= 7x2y2 -2xy -5y3 -y2 +5x4 -x2y2 -4xy +3y3 -3y2 +2x4 -3x2y2 +6xy +2y3 +6y2 +7
= (7x2y2 -x2y2 -3x2y2) +(-2xy -4xy +6xy) +(-5y3 +3y3 +2y3) +(-y2 -3y2 +6y2) +(5x4 +2x4) + 7
= 3x2y2 + 2y2 + 7x4 + 7
\(x^2\ge0;y^2\ge0\Rightarrow3x^2y^2\ge0\) (1)
\(y^2\ge0\Rightarrow2y^2\ge0\) (2)
\(x^4\ge0\Rightarrow7x^4\ge0\) (3)
7 > 0 (4)
Từ (1), (2), (3) và (4) => \(3x^2y^2+2y^2+7x^4+7\ge0\)
Vậy ít nhất 1 trong 3 đa thức M, N, P có giá trị dương với mọi x, y
a, \(M+N=2x^2+x^2-2xy-2xy-3y^2+3y^2+1-1=3x^2-4xy\)
\(M-N=2x^2-x^2-2xy+2xy-3y^2-3y^2+1+1=x^2-6y^2+2\)
b, \(P\left(x\right)+Q\left(x\right)=x^3-4x^3+2x^2-6x+x+2-5=-3x^3+2x^2-5x-3\)
\(P\left(x\right)-Q\left(x\right)=x^3+4x^3-2x^2-6x-x+2+5=5x^3-2x^2-7x+7\)
`M+N`
`=2x^{2}-2xy-3y^{2}+1+x^{2}-2xy+3y^{2}+1`
`=(2x^{2}+x^{2})-(2xy+2xy)+(3y^{2}-3y^{2})+1+1`
`=3x^{2}-4xy+2`
`M-N`
`=2x^{2}-2xy-3y^{2}-(x^{2}-2xy+3y^{2}+1)`
`=2x^{2}-2xy-3y^{2}-x^{2}+2xy-3y^{2}-1`
`=(2x^{2}-x^{2})+(2xy-2xy)-(3y^{2}+3y^{2})+1-1`
`=x^{2}-6y^{2}