Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 7x2y2 - 2xy - 5y3 - y2 + 5x4
N = -x2y2 - 4xy + 3y3 - 3y2 + 2x4
P = -3x2y2 + 6xy + 2y3 + 6y2 + 7
M+N+P = 7x2y2 - 2xy - 5y3 - y2 + 5x4 + (-x2y2 - 4xy + 3y3 - 3y2 + 2x4) + (-3x2y2 + 6xy + 2y3 + 6y2 + 7)
M+N+P = 7x2y2 - 2xy - 5y3 - y2 + 5x4 - x2y2 - 4xy + 3y3 - 3y2 + 2x4 - 3x2y2 + 6xy + 2y3 + 6y2 + 7
M+N+P = (7x2y2 - x2y2 - 3x2y2) - (2xy + 4xy - 6xy) - (5y3 - 3y3 - 2y3) - ( y2 + 3y2 - 6y2 ) + ( 5x4 + 2x4 ) + 7
M+N+P = 3x2y2 + 2y2 + 7x4 + 7
Ta có : M+N+P = 3x2y2 + 2y2 + 7x4 + 7
Vì 3x2y2 + 2y2 + 7x4 \(\ge\) 0
7 > 0
=> 3x2y2 + 2y2 + 7x4 + 7 > 0
=> M+N+P > 0 với mọi x,y
=> Ít nhất 1 trong 3 đa thức đã cho có giá trị dương với mọi x,y
Ta có:
M +N +P = (7x2y2 -2xy -5y3 -y2 +5x4) +(-x2y2 -4xy +3y3 -3y2 +2x4) +(-3x2y2 +6xy +2y3 +6y2 +7)
= 7x2y2 -2xy -5y3 -y2 +5x4 -x2y2 -4xy +3y3 -3y2 +2x4 -3x2y2 +6xy +2y3 +6y2 +7
= (7x2y2 -x2y2 -3x2y2) +(-2xy -4xy +6xy) +(-5y3 +3y3 +2y3) +(-y2 -3y2 +6y2) +(5x4 +2x4) + 7
= 3x2y2 + 2y2 + 7x4 + 7
\(x^2\ge0;y^2\ge0\Rightarrow3x^2y^2\ge0\) (1)
\(y^2\ge0\Rightarrow2y^2\ge0\) (2)
\(x^4\ge0\Rightarrow7x^4\ge0\) (3)
7 > 0 (4)
Từ (1), (2), (3) và (4) => \(3x^2y^2+2y^2+7x^4+7\ge0\)
Vậy ít nhất 1 trong 3 đa thức M, N, P có giá trị dương với mọi x, y
Giả sử 3 đa thức trên cùng nhận giá trị âm với mọi x, y.
Ta có: \(A.B.C\)\(=\left(16x^4-8x^3y+7x^2y^2-9y^4\right)+\left(-15x^4+3x^3y-5x^2y^2-6y^4\right)+\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4+5x^3y+3x^2y^2+17y^4+1\)
\(=\left(16x^4-15x^4\right)-\left(8x^3y-3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2+3x^2y^2\right)-\left(9y^4+6y^4-17y^4\right)+1\)
\(=x^4-0+5x^2y^2-2y^4+1\)
\(=x^4+5x^2y^2-2y^4+1\)
Ta thấy: \(x^4\ge0\) \(\forall x\) \(;\) \(x^2y^2\ge0\)\(\forall x,y\) \(;\) \(y^4\ge0\)\(\forall y\)
\(\Rightarrow\)\(\left(x^4+5x^2y^2-2y^4+1\right)\ge1\) \(\forall x,y\)
\(\Rightarrow\)\(A.B.C\)nhận giá trị dương
\(\Rightarrow\)3 đa thức trên không thể cùng nhận giá trị âm với mọi x, y
\(\Rightarrow\)\(dpcm\)
Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)
b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)
c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)
Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2 -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy
B6:
Ta có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)
=> \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c\)
Mà theo đề bài \(5a-3b+2c=0\)
=> \(P\left(-1\right)+P\left(-2\right)=0\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
Thay vào ta được: \(P\left(-1\right).P\left(-2\right)=-P\left(-2\right).P\left(-2\right)=-P\left(-2\right)^2\le0\left(\forall a,b,c\right)\)
=> đpcm
B5:
Ta có:
P+Q+R
= 5x2y2-xy-2y3-y2+5x4-2x2y2-5xy+y3-3y2+2x4-x2y2+6xy+y3+6y2+7
= x2y2+2y2+7x4+7
Mà \(x^2y^2\ge0;2y^2\ge0;7x^4\ge0\left(\forall x,y\right)\)
=> \(x^2y^2+2y^2+7x^4+7\ge7\)
=> Tổng 3 đa thức P,Q,R luôn dương
=> Trong 3 đa thức đó luôn tồn tại 1 đa thức lớn hơn 0
=> đpcm
Ta có:
M +N +P = (7x^2y^2 -2xy -5y^3 -y^2 +5x^4) +(-x^2y^2 -4xy +3y^3 -3y^2 +2x^4) +(-3x^2y^2 +6xy +2y^3 +6y^2 +7)
= 7x^2y^2 -2xy -5y^3 -y^2 +5x^4 -x^2y^2 -4xy +3y^3 -3y^2 +2x^4 -3x^2y^2 +6xy +2y^3 +6y^2 +7
= (7x^2y^2 -x^2y2 -3x^2y^2) +(-2xy -4xy +6xy) +(-5y^3 +3y^3 +2y^3) +(-y^2 -3y^2 +6y^2) +(5x^4 +2x^4) + 7
= 3x^2y^2 + 2y^2 + 7x^4 + 7
x^2≥0;y^2≥0⇒3x^2y^2≥0 (1)
y^2≥0⇒2y^2≥0(2)
x4≥0⇒7x4≥0 (3)
7 > 0 (4)
Từ (1), (2), (3) và (4) => 3x^2y^2+2y^2+7x^4+7≥0
Vậy ít nhất 1 trong 3 đa thức M, N, P có giá trị dương với mọi x, y