Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự vẽ ( ảnh thật )
b. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}\) ( do OI = AB ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'-OF'}\)
\(\Leftrightarrow\dfrac{6}{OA'}=\dfrac{4}{OA'-4}\)
\(\Leftrightarrow OA'=12\left(cm\right)\)
Thế \(OA'=12\) vào \(\left(1\right)\Leftrightarrow\dfrac{6}{12}=\dfrac{0,5}{A'B'}\)
\(\Leftrightarrow A'B'=1\left(cm\right)\)
ΔOAB∞ΔOA'B'
⇒\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{1}{A'B'}=\dfrac{24}{OA'}\) 1
ΔOFI∞ΔFA'B'
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{F'A'}\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OF}{OF-OA}\)
⇔\(\dfrac{1}{A'B'}=\dfrac{12}{12-OA'}\) 2
Từ 1 và 2 ⇒ \(\dfrac{1}{OA'}=\dfrac{12}{12-OA'}\)
⇔1(12-OA') = 12. OA'
⇔12-12.OA' = 12.OA'
⇔-12.OA' - 12. OA' = -12
⇔-24.OA' = -3
⇔OA' = 0.125
Thay OA'= 0.125 vào 1
⇒\(\dfrac{1}{A'B'}=\dfrac{24}{-0.125}\Rightarrow\dfrac{1.0,125}{24}=\dfrac{1}{192}\)
Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{4}=\dfrac{1}{8}+\dfrac{1}{d'}\Rightarrow d'=8cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{h}{h'}=\dfrac{8}{8}=1\Rightarrow h=h'\)