Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ làm phần tính toán thôi nha, còn phần vẽ thì chắc bạn cũng biết vẽ rồi
Bài Giải
a. Dựng ảnh A'B' của vật qua thấu kính ta thấy:
f < d < 2f nên ảnh A'B' là ảnh thật, ngược chiều với vật AB
b.Áp dụng công thức độ phóng đại của ảnh ta có:
\(\dfrac{AB}{A'B'}=\dfrac{d}{d'}=\dfrac{12}{24}=\dfrac{1}{2}\)
=> A'B' = 2AB =4 (cm)
Áp dụng công thức thấu kính ta có:
\(\dfrac{1}{f}\) = \(\dfrac{1}{d}+\dfrac{1}{d'}\)
=> d' = \(\dfrac{d.f}{d-f}\) = \(\dfrac{12.8}{12-8}\) = 24 (cm)
Ảnh ảo, cùng chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{9}\Rightarrow d'=\dfrac{36}{7}cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{9}{\dfrac{36}{7}}\Rightarrow h'=\dfrac{8}{7}cm\approx1,14cm\)
b) ảnh A'B' là ảnh ảo ngược chiều và nhỏ hơn vật
c) ΔOAB∞ΔOA'B'
⇒\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{1}{A'B'}=\dfrac{5}{OA'}\) 1
ΔOFI∞ΔFA'B'
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{F'A'}\Rightarrow\dfrac{AB}{A'B'}\dfrac{OF}{OF-OA}\)
\(\Leftrightarrow\dfrac{1}{A'B'}=\dfrac{3}{3-OA'}\) 2
Từ 1 và 2 ⇒ \(\dfrac{1}{OA'}=\dfrac{3}{3-OA'}\)
⇔1(3-OA') = 3. OA'
⇔3- 3.OA' = 3.OA'
⇔-3.OA' -3. OA' = -3
⇔-6.OA' = -3
⇔OA' = -9
Thay OA'= -9 vào 1
⇒\(\dfrac{1}{A'B'}=\dfrac{5}{-9}\Rightarrow A'B'=\dfrac{1.\left(-9\right)}{5}=-1.8\)
Tham khảo hình vẽ!!!
\(\Delta OAB\sim\Delta OA'B'\)
\(\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{4}{A'B'}=\dfrac{4}{OA'}\left(1\right)\)
\(\Delta FA'B'\sim\Delta FOI\)
\(\Rightarrow\dfrac{OI}{A'B'}=\dfrac{OF}{OF-OA'}=\dfrac{OA}{A'B'}\)
\(\Rightarrow\dfrac{4}{A'B'}=\dfrac{12}{12-OA'}\left(2\right)\)
\(\Rightarrow\dfrac{4}{OA'}=\dfrac{12}{12-OA'}\Rightarrow OA'=3cm\)
\(\Rightarrow A'B'=\dfrac{AB\cdot OA'}{OA}=\dfrac{4\cdot3}{4}=3cm\)
Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)
ΔOAB∞ΔOA'B'
⇒\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{1}{A'B'}=\dfrac{24}{OA'}\) 1
ΔOFI∞ΔFA'B'
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{F'A'}\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OF}{OF-OA}\)
⇔\(\dfrac{1}{A'B'}=\dfrac{12}{12-OA'}\) 2
Từ 1 và 2 ⇒ \(\dfrac{1}{OA'}=\dfrac{12}{12-OA'}\)
⇔1(12-OA') = 12. OA'
⇔12-12.OA' = 12.OA'
⇔-12.OA' - 12. OA' = -12
⇔-24.OA' = -3
⇔OA' = 0.125
Thay OA'= 0.125 vào 1
⇒\(\dfrac{1}{A'B'}=\dfrac{24}{-0.125}\Rightarrow\dfrac{1.0,125}{24}=\dfrac{1}{192}\)
cho mk sửa lại nha!!
⇔-24.OA'= -12
⇔OA'=0.5
thay OA'=0.5 vào 1
⇒\(\dfrac{1}{A'B'}=\dfrac{24}{0.5}\Rightarrow\dfrac{1.0,5}{24}=\dfrac{1}{48}\)