K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Giả sử $AB=3, AC=4, BC=5$ (cm)

Vì $3^2+4^2=5^2$ nên theo định lý Pitago đảo thì $ABC$ là tam giác vuông tại $A$

$A'B'C'$ đồng dạng với $ABC$ nên $A'B'C'$ là tam giác vuông tại $A'$

$\Rightarrow S_{A'B'C'}=\frac{A'B'.A'C'}{2}=54\Rightarrow A'B'.A'C'=108(*)$ (cm)

$ABC\sim A'B'C'\Rightarrow \frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}$

$\Leftrightarrow \frac{A'B'}{3}=\frac{B'C'}{5}=\frac{C'A'}{4}(**)$

Từ $(*); (**)$ suy ra $A'B'=9; B'C'=15; C'A'=12$ (cm)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)

Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)

Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm

24 tháng 2 2022

Nguyễn Ngọc Huy Toàn đâu ra giúp kìa :V

24 tháng 2 2022

=^= gọi em í làm gì tròi, giúp thì giúp luôn đi :v

3 tháng 2 2021

Theo giả thiết ta có: \(A'B'=AB+3=5+3=8\left(cm\right)\).

Do \(\Delta ABC\) đồng dạng với \(\Delta A'B'C'\)

\(\Rightarrow\dfrac{AB}{A'B'}=\dfrac{AC}{A'C'}=\dfrac{BC}{B'C'}\)

\(\Rightarrow\dfrac{7}{A'C'}=\dfrac{9}{B'C'}=\dfrac{5}{8}\Rightarrow\left\{{}\begin{matrix}A'C'=\dfrac{7.8}{5}=\dfrac{56}{5}\left(cm\right)\\B'C'=\dfrac{9.8}{5}=\dfrac{72}{5}\left(cm\right)\end{matrix}\right.\).

24 tháng 2 2022

e làm a,b chung luôn nha chị

Xét tam giác ABC và tam giác A`B`C`, có:

\(\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( gt )

Góc A = góc A` = 90 độ

=> tam giác ABC đồng dạng tam giác A`B`C`

=>\(\dfrac{AC}{A`C`}=\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( tính chất 2 tam giác đồng dạng )

24 tháng 2 2022

=^= um dù sao cũm cảm ơn nhó:33

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

a) Ta thấy:

$\frac{4}{8}=\frac{5}{10}=\frac{6}{12}$ nên 2 tam giác đồng dạng theo TH c.c.c

b) Pitago: $A'C'=\sqrt{B'C'^2-A'B'^2}=\sqrt{16^2-9^2}=5\sqrt{7}$

Xét tam giác $ABC$ và $A'B'C'$ có:

$\widehat{A}=\widehat{A'}=90^0$

$\frac{AB}{AC}\neq \frac{A'B'}{A'C'}$

Do đó 2 tam giác không đồng dạng