K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)

Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)

Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm

3 tháng 6 2021

Vì △ABC∼△A'B'C'

mà A'B' = AB - 12 = 24 - 12 = 12m

=> Ta có tỉ số đồng dạng: AB/A'B' = AC/A'C' = BC/B'C'

=> 24/12 = 42/A'C' = 48/B'C'

=> A'C' = 21m; B'C' = 24m

3 tháng 6 2021

Thank

 

AB+BC+AC=18cm

nên AC=6cm

AB/A'B'=AC/A'C'=BC/B'C'=2

=>4/A'B'=6/A'C'=8/B'C'=2

=>A'B'=2; A'C'=3; B'C'=4

a: Xét ΔA'B'C' và ΔABC có 

A'B'/AB=A'C'/AC=B'C'/BC

Do đó: ΔA'B'C'\(\sim\)ΔABC

b: \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{A'B'}{AB}=2\)

17 tháng 3 2022

Vì ∆ A’B’C’ đồng dạng với tam giác ABC nên A′B′AB=A′C′AC=B′C′BCA′B′AB=A′C′AC=B′C′BC  (1)

Thay AB = 3(cm), AC = 7 (cm), BC = 5 (cm) , A’B’ = 4,5 (cm) vào (1)

ta có: 4,5/3=A′C′/7=B′C′/5 (cm)

Vậy: A’C’ =7.4,5/3=10,5=7.4,53=10,5 (cm)

B’C’ =5.4,5/3=7,5 (cm).

 

 

17 tháng 3 2022

Bc 5, ac 8