Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,
Kẻ CD vuông góc CB(D thuộc tia BH)
Theo tales: OA/CD=BO/BC=>3/2/CD=3/(3+2)=>CD=5/2(cm)
1/CH^2=1/CD^2+1/BC^2=>CH^2=5=>CH= căn (5)
Vậy khoảng cách từ điểm C(0,-2) tới đường thẳng y=-2x+3 là căn 5
a,
Giao điểm của (d) với trục Ox tức là nghiệm của hệ phương trình:
y=0,y=-2x+3=>x=3/2=>tọa độ giao điểm (3/2,0)
Giao điểm của (d) với trục Oy tức là nghiệm của hệ phương trình:
x=0,y=-2x+3=>y=3=>tọa độ giao điểm là (0,3)
=>Đồ thị hàm số y=-2x+3 sẽ cắt trục tung tại điểm có tung độ bằng 3 và cắt trục hoành tại điểm có hoành độ là 3/2
Khoảng cách từ điểm O(0,0) tới đường thẳng y=-2x+3 là h.
Khi đó áp dụng hệ thức lượng ta sẽ có:
1/h^2=1/3^2+1/(3/2)^2=5/9=>h=3 căn (5)/5
Vậy khoảng cách từ điểm O(0,0) tới đường thẳng y=-2x+3 là 3 căn (5)/5
\(a\text{) Gọi }M\left(m;m^2\right)\in P\)
\(d\left(M;Ox\right)=d\left(M;Oy\right)\Leftrightarrow\left|x_M\right|=\left|y_M\right|\)\(\Leftrightarrow\left|m\right|=\left|m^2\right|\Leftrightarrow m^2=m\text{ hoặc }m^2=-m\)
\(\Leftrightarrow m^2-m=0\text{ hoặc }m^2+m=0\)
\(\Leftrightarrow m=0\text{ hoặc }m=1\text{ hoặc }m=-1\)
\(\text{Kết luận: }M\left(0;0\right)\text{ hoặc }M\left(1;1\right)\text{ hoặc }M\left(-1;1\right)\)
\(b\text{) }A\in d\Rightarrow a+b=1\text{ (1)}\)
\(\text{Phương trình hoành độ giao điểm của }P\text{ và }d\text{ là: }x^2=ax+b\)
\(\Leftrightarrow x^2-ax-b=0\text{ (*)}\)
\(d\text{ là tiếp tuyến của }P\Leftrightarrow d\text{ giao }P\text{ tại 1 điểm duy nhất }\Leftrightarrow\left(\text{*}\right)\text{ có nghiệm kép }\)
\(\Leftrightarrow\Delta=a^2+4b=0\text{ (2)}\)
\(\left(1\right)\Leftrightarrow b=1-a;\text{ thay vào (2) ta được: }a^2+4\left(1-a\right)=0\)
\(\Leftrightarrow a^2-4a+4=0\Leftrightarrow\left(a-2\right)^2=0\Leftrightarrow a=2\)
\(\Rightarrow b=-1\)
\(\text{Vậy }a=2;\text{ }b=-1\)
a: y=x-5
=>x-y-5=0
M thuộc Ox nên M(x;0)
Theo đề, ta có: \(d\left(M;d\right)=2\)
=>\(\dfrac{\left|1\cdot x+\left(-1\right)\cdot0+\left(-5\right)\right|}{\sqrt{1^2+\left(-1\right)^2}}=2\)
=>|x-5|=2căn 2
=>\(x=\pm2\sqrt{2}+5\)
b: N thuộc Oy nên N(0;y)
(d): x-y-5=0
Theo đề, ta có: \(d\left(N;d\right)=2\)
=>\(\dfrac{\left|0\cdot\left(-1\right)+y\cdot\left(-1\right)-5\right|}{\sqrt{1^2+1^2}}=2\)
=>|y+5|=2căn 2
=>\(y=\pm2\sqrt{2}-5\)