K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

n^3 + 17n = n^3 - n + 18n 

                = n(n^2-1) + 18n

                = n(n-1)(n+1) + 18n 

nhận xét n, n-1 , n+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3 và ít nhất 1 số  chia hết cho 2 

nên n(n-1)(n+1) chia hết cho 2 và 3 mà 2 và 3 nguyên tố cùng nhau nên n(n-1)(n+1) chia hết cho 6

hay n^3 - n chia hết cho 6 

và 18n chia hết cho 6 

=> n^3 -n + 18n chia hết cho 6 

hay n^3 + 17n chia hết cho 6

6 tháng 1 2017

Lớp 7 mà bài này ko làm được hả anh trai

30 tháng 11 2015

Giả sử n = 1 , ta có:

A= 13 - 1.17

 = 1 - 17 = -16

Không chia hết cho 6 

24 tháng 12 2020

sai

ví dụ n>2

giả sử n=3

=>33-17.3=-24 chia hết cho 6

Trần Long Tăng

Ta có :

\(n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n^2-1\right)+12n\)

\(=\left(n-1\right)\left(n-1\right)n+12n\)

Vì \(n-1\text{ };\text{ }n\text{ };\text{ }n+1\)là tích 3 số nguyên liên tiếp nên : \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 6 .

Mà 12n chia hết cho 6 .

\(\Rightarrow n^3+11n\)chia hết cho 6 .

20 tháng 9 2018

Cho a,b,c khác 0 và a+b+c=0.Tính giá trị biểu thức

Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/a^2+c^2-b^2

\(B=n^3+17n=n\left(n+17\right)\)

Tích của 2 số cách nhau 17 đơn vị thì chia hết cho 6. Vậy B chia hết cho 6.

15 tháng 4 2019

B=n3+17n=n3-n+18n

vì 18n chia hết cho 6          (1)

=> ta phải chứng minh n3-n chia hết cho 6

ta có: n3-n=n(n2-1)=n(n-1)(n+1)

vì tích của 2 số tự nhiên liên tiếp chi hết cho 6               (2)

từ (1) và (2)=> B chia hết cho 6 

20 tháng 12 2017

17n^2+1 chia hết cho 6 hay 17n^2+1 chẵn => 17n^2 lẻ => n^2 lẻ => n lẻ => n ko chia hết cho 2

Mà 2 nguyên tố => (n,2) = 1

17n^2+1 chia hết cho 6 => 17n^2+1 chia hết cho 3 => 17n^2 ko chia hết cho 3 => n^2 ko chia hết cho 3 ( vì 17 và 3 là 2 số nguyên tố cùng nhau) => n ko chia hết cho 3

Mà 3 nguyên tố => (n,3) = 1

=> ĐPCM

k mk nha

2 tháng 11 2016

17n; 17n+1; 17n+2 là 3 số nguyên liên tiếp nên có đúng một số chia hết cho 3 

* nếu n chia hết cho 3 => 17n chia hết cho 3 => (17n+1) và (17n+2) đều không chia hết cho 3, mà 3 là số nguyên tố => (17n+1)(17n+2) không chia hết cho 3 

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chi hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 

=> (17n+1)(17n+2) chia hết cho 3 

Tóm lại: (17n+1)(17n+2) chia hết cho 3 khi và chỉ khi n không chia hết cho 3 

------------------------------ 

Giải xong câu 2 là hiểu ngay bạn ghi đó là các số mủ 

17ⁿ, 17ⁿ+1 và 17ⁿ+2 là 3 số tự nhiên liên tiếp, nên có một số chia hết cho 3, mà 17ⁿ không chia hết cho 3, nên một trong hai số 17ⁿ+1 hoặc 17ⁿ+2 chia hết cho 3 

=> (17ⁿ+1)(17ⁿ+2) chia hết cho 3 

2 tháng 11 2016

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chia hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 
=> (17n+1)(17n+2) chia hết cho 3