Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab = 100000a+10000b+1000a+100b+10a+b
-->(abcabc +ababab ) =201110a+20111b+1001c
=91(2210a+221b+11c)
= 7.13 (2210a+221b+11c) chia hết cho 7
Giải:
Ta có:
abcabc = 100000.a + b.10000 + c.1000 + a.100 + b.10 +c
ababab = 100000.a + b.10000 + a.1000 + b.100 + a.10 + b
\(\Rightarrow\) abcabc + ababab = 201110.a + 20111.b + 1001.c = 91.( 2210.a + 221.b + 11.c ) chia hết cho 7 ( vì 91 = 13.7 chia hết cho 7 )
\(\Rightarrowđpcm\)
phân tích ra rồi cộng lại sẽ đc số chia hết cho 7
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab= 100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab) = 100000a+10000b+1000c+100a+10b+c+ 100000a+10000b+1000a+100b+10a+b
= 201110a+22111b+1001c
= 91.(2210a+221b+11c)
= 7.13.(2210a+221b+11c)
=> (abcabc+ababab) \(⋮\)7
abcabc+abacab
(=) ax100000+bx10000+cx1000+ax100+b x 10+c+ax100000+bx10000+ax1000+b x 100+ax10+b
(=) ax(100000+100+100000+1000+10) + bx(10000+10+10000+100+1)+ cx(1000+1)
(=)ax201110+bx20111+cx1001
vì 201110 chia hết cho 7 => ax20110 chia hết 7
vì 20111 chia hết cho 7 => bx20111 chia hết cho 7
vi 1001 chia hết cho 7 => cx1001 chia hết cho 7
=> a x 201110+bx20111+cx1001 chia hết cho 7
=>abcabc+ababab chia hết cho 7
a ) Ta có : abab = ab . 101
Để abab là số chính phương thì ab chỉ có thể là 101
Mà ab là số có 2 chữ số
=> abab không phải là số chính phương.
b ) Ta có : abcabc = abc . 1001
Để abcabc là số chính phương thì abc chỉ có thể bằng 1001
Mà abc là số có 3 chữ số
=> abcabc không phải là số chính phương.
c ) Ta có : ababab = ab . 10101
Để ababab là số chính phương thì ab chỉ có thể là 10101
Mà ab là số có 2 chữ số
=> ababab không phải là số chính phương.
ta có abba=1000a+100b+10b+a=1001a+110b=11(91.a+10b)vậy số này chia hết cho 11
b,c cậu cũng phân tích cấu tạo số ra là xong
muốn chia cho 2,5 dư 1 suy ra số này phải có tận cùng là 1
Vậy tổng chữ số là
x+4+5+9+1=x+19
Vậy x=9thì thỏa mãn vậy số đó là tổng các chữ số chia 9 dư 1
94591
b)
Ta có : aaaaaa = a . 111 111
= a . 7 . 15873 chia hết cho 7 ( vì 7 chia hết cho bảy, ta áp dụng tính chất a chia hết cho m thì a.b.c đều chia hết cho m)
Vậy aaaaaa chia hết cho 7
c)
Ta có abcabc= abc . 1001
= abc. 91 . 11 chia hết cho 11 và 91
Vậy abcabc chia hết cho 11 và 91
e)
Ta có ababab= ab . 10101
= ab . 1443 . 7 chia hết cho 7
mk chỉ bít làm vài câu thôi hi vọng sẽ giúp đc bạn phần nào
kb nha
CHÚC BẠN HỌC TỐT!
c/abcabc=1000.abc+abc=1001.abc chia hết cho 7;11;13
b/ababab=ab.10000+ab.100+ab=ab.10101 chia hết cho 7
a/abba=a.1000+b.100+b.10+a=a.1001+b.110 chia hết cho 11
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab=100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab)=201110a+20111b+1001c
=91.(2210a+221b+11c)
=> (abcabc+ababab)\(⋮\)91
ta có 7 và 13 nguyên tố cùng nhau mà 7.13=91
=> (abcabc+ababab) \(⋮\)7