Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phép thử T được xét là: "Từ mỗi hộp lấy ngẫu nhiên một quả cầu".
Mỗi một kết quả có thể có của phép thư T gồm hai thành phần là: 1 quả cầu của hộp thứ nhất và 1 quả cầu của hộp thứ 2.
Có 10 cách để lấy ra 1 quả cầu ở hộp thứ nhất và có 10 cách để lấy 1 quả cầu ở hộp thứ 2. Từ đó, vận dụng quy tắc nhân ta tìm được số các cách để lập được một kết quả có thể có của hai phép thử T là 10 . 10 = 100. Suy ra số các kết quả có thể có của phép thử T là n(Ω) = 100.
Vì lấy ngầu nhiên nên các kết quả có thể có của phép thử T là đồng khả năng.
Xét biến cố A: "Quả cầu lấy từ hộp thứ nhất có màu trắng".
Mỗi một kết quả có thể có thuận lợi cho A gồm 2 thành phần là: 1 quả cầu trắng ở hợp thứ nhất và 1 quả cầu (nào đó) ở hộp thứ 2. Vận dụng quy tắc nhân ta tìm được số các kết quả có thể có thuận lợi cho A là: n(A) = 6 . 10 = 60.
Suy ra P(A) = = 0,6.
Xét biến cố B: "Quả cầu lấy từ hộp thứ hai có màu trắng".
Tương tự như trên ta tìm được số các kết quả có thể thuận lợi cho B là:
n(B) = 10 . 4 = 40.
Từ đó suy ra P(B) = = 0,4.
a) Ta có A . B là biến cố: "Lấy được 1 cầu trắng ở hộp thứ nhất và 1 cầu trắng ở hộp thứ hai". Vận dụng quy tắc nhân ta tìm được số các kết quả có thể có thuận lợi cho A . B là:
6 . 4 =24. Suy ra:
P(A . B) = = 0,24 = 0,6 . 0,4 = P(A) . P(B).
Như vậy, ta có P(A . B) = P(A) . P(B). Suy ra A và B là hai biến cố độc lập với nhau.
b) Gọi C là biến cố: "Lấy được hai quả cầu cùng màu". Ta có
C = A . B + . .
Trong đó = "Quả cầu lấy từ hộp thứ nhất có màu đen" và P() = 0,4.
: "Quả cầu lấy từ hộp thứ hai có màu đen" và P() = 0,6.
Và ta có A . B và . là hai biến cố xung khắc với nhau.
A và B độc lập với nhau, nên và cũng độc lập với nhau.
Qua trên suy ra;
P(C) = P(A . B + . ) = P(A . B) + P( . ) = P(A) . P(B) + P() . P()
= 0,6 . 0,4 + 0,4 . 0,6 = 0,48.
c) Gọi D là biến cố: "Lấy được hai quả cầu khác màu". Ta có
D = => P(D) = 1 - P(C) = 1 - 0,48 = 0,52.
a) Vì số bi trong hộp thứ nhất và hộp thứ hai là độc lập và việc lấy ra số các bi từ hai hộp là độc lập nên hai biến cố A, B là độc lập.
b)
- Trên A:
+ Hai quả lấy ra đều màu đỏ: \(P=\frac{C^2_3}{C^2_5}=\frac{3}{10}\).
+ Hai quả lấy ra cùng màu: \(P=\frac{C^2_3+C^2_2}{C^2_5}=\frac{4}{10}\)
+ Hai quả lấy ra khác màu: \(P=1-\frac{4}{10}=\frac{6}{10}\).
- Trên B:
+ Hai quả lấy ra đều màu đỏ: \(P=\frac{C^2_4}{C^2_{10}}=\frac{2}{15}\).
+ Hai quả lấy ra cùng màu: \(P=\frac{C^2_4+C^2_6}{C^2_{10}}=\frac{7}{15}\)
+ Hai quả lấy ra khác màu: \(P=1-\frac{7}{15}=\frac{8}{15}\).
Chọn A
Gọi T là phép thử lấy mỗi hộp ra một quả. Số phần tử của không gian mẫu trong phép thử T là
Gọi A là biến cố hai quả lấy ra từ mỗi hộp đều là màu đỏ. Số phần tử của biến cố A là: .
Vậy xác suất của biến cốA là .
Kí hiệu
A: "Quả lấy từ hộp thứ nhất màuđỏ" ;
B: "Quả lấy từ hộp thứ hai màuđỏ".
Ta thấy A và B độc lập.
a) Cần tính P(A ∩ B).
Ta có: P(A ∩ B) = P(A). P(B) = 0,24
b) Cần tính xác suất của C = ( A ∩ B ) ∪ ( A ∩ B )
Do tính xung khắc và độc lập của các biến cố, ta có
P ( C ) = P ( A ) . P ( B ) + P ( A ) . P ( B ) = 0 , 48
c) Cần tính P ( C ) . Ta có P ( C ) = 1 − P(C) = 1 − 0,48 = 0,52
Không gian mẫu là kết quả việc chọn ngẫu nhiên 4 quả cầu từ hộp 10 quả cầu.
a. A: “ Bốn quả lấy ra cùng màu”
TH1: Bốn quả lấy ra cùng đen
TH2: Bốn quả lấy ra cùng trắng
b. B: “ Cả 4 quả lấy ra đều màu đen”
⇒ B−: “ Có ít nhất 1 quả màu trắng”.
Đáp án B
Lấy ngẫu nhiên từ mỗi hộp ra 1 quả cầu có
C 12 1 . C 10 1 = 120 cách
Lấy ngẫu nhiên từ mỗi hộp ra 1 quả cầu có
C 7 1 . C 6 1 = 42 cách
Vậy xác suất cần tính là P = 42 120 = 7 20
Đáp án B
Lấy mỗi hộp 1 quả cầu có: C 12 1 . C 10 1 = 120 quả cầu.
Gọi A là biến cố: 2 quả cầu lấy ra cùng màu đỏ.
Khi đó: Ω A = C 7 1 . C 6 1 = 42 .
Do đó xác suất cần tìm là: P ( A ) = 42 120 = 7 20 .
a) Không gian mẫu là kết quả của việc lấy ngẫu nhiên 1 quả cầu ở hộp thứ nhất và một quả cầu ở hộp thứ hai
+ Có 10 cách lấy 1 quả cầu bất kì ở hộp 1 và có 10 cách lấy 1 quả cầu bất kì ở hộp 2. Nên số phần tử của không gian mẫu là;
⇒ n(Ω) = 10.10 = 100.
A: “ Quả cầu lấy từ hộp thứ nhất trắng”
⇒ Có 6 cách lấy quả cầu màu trắng ở hộp A và 10 cách lấy quả cầu ở hộp B
⇒ n(A) = 6.10 = 60.
B: “Quả cầu lấy từ hộp thứ hai trắng”
⇒ Có 4 cách lấy quả cầu màu trắng ở hộp B và 10 cách lấy quả cầu ở hộp A
⇒ n(B) = 4.10 = 40.
A.B: “Cả hai quả cầu lấy ra đều trắng”
⇒ Có 6 cách lấy quả cầu màu trắng ở hộp A và 4 cách lấy quả cầu màu trắng ở hộp B
⇒ n(A.B) = 6.4 = 24.
hay P(A.B) = P(A).P(B)
⇒ A và B là biến cố độc lập.
b) Gọi C: “Hai quả cầu lấy ra cùng màu”.
Ta có: A− : “Quả cầu lấy ra từ hộp thứ nhất màu đen”
B− : “ Quả cầu lấy ra từ hộp thứ hai màu đen”
⇒A−.B− : “Cả hai quả cầu lấy ra đều màu đen”
Nhận thấy A.B và A−.B− xung khắc (Vì không thể cùng lúc xảy ra hai trường hợp 2 quả cầu lấy ra cùng trắng và cùng đen)
Và C=(A.B)∪(A−.B−)
c) C− : “Hai quả cầu lấy ra khác màu”
⇒ P(C− )=1-P(C)=1-0,48=0,52