K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2016

Hướng dẫn:

Ta có hàm số \(y=(x^2-4x+4)(x+1)=x^3-3x^2+4\) có đồ thị (C)

M nằm trên (C) , hoành độ dương nên có tọa độ \(M(a;a^3-3a^2+4)\) với \(a>0\)

Tính y' rồi lập viết phương trình tiếp tuyến của (C) tại điêm M, lập hệ phương trình giao điêm của tiếp tuyến với (C), tìm ra tọa độ 2 điểm M,N rồi thay vào điều kiện MN=3 đê ra kết quả

Chúc bạn học tốt ^^

24 tháng 5 2016

Lập hệ phương trình giao điểm là như thế nào vậy bạn, lần đầu mình mới nghe :))

17 tháng 1 2019

6 tháng 9 2019

6 tháng 10 2018

27 tháng 4 2018

Đáp án C

Ta có:  

Suy ra PTTT của (C) tại M là  

Khi đó PT hoành độ giao điểm của (C) và là:  

 

28 tháng 2 2017

+Đồ thị hàm số đã cho có TCĐ là x= 1 và TCN là y= 2;  giao điểm của hai tiệm cận là

 I (1; 2) .

 Lấy điểm  M ( a ;   b )   ∈ C ⇒ b = 2 a - 1 a - 1   ( a > 1 ) .

+ Phương trình tiếp tuyến của (C )  tại M là  y = - 1 ( a - 1 ) 2 ( x - a ) + 2 a - 1 a - 1

+ Phương trình  đường thẳng MI  là  y = 1 ( a - 1 ) 2 ( x - 1 ) + 2

+ Tiếp tuyến tại M vuông góc với MI  nên ta có

- 1 ( a - 1 ) 2 . 1 ( a - 1 ) 2 = - 1 ⇔

Vì yêu cầu hoành độ và tung độ của M nguyên dương nên điểm cần tìm là  M( 2; 3).

Chọn D.

26 tháng 5 2017

Chọn C.

10 tháng 9 2018

Chọn A.

Xét hàm số  y   =   x 4 2 - 3 x 2 + 5 2  ta có: 

Phương trình tiếp tuyến của (C) tại M: 

Phương trình hoành độ giao điểm của (d) và (C):

Đường thẳng (d) cắt (C) tại hai điểm phân biệt khác M khi phương trình (2_ có hai nghiệm phân biệt khác a

mà a nguyên nên a = 0.

20 tháng 5 2017

29 tháng 4 2016

Gọi k là hệ số góc của tiếp tuyến tại M, N thì \(x_M;x_N\) là nghiệm của phương trình :

\(f'\left(x\right)=k\Leftrightarrow3x^2-6x-k=0\)

Để tồn tại hai tiếp điểm M, N thì phải có \(\Delta'>0\Leftrightarrow k>-3\)

Ta có \(y=f'\left(x\right)\left(\frac{1}{3}x-\frac{1}{3}\right)-2x+2\)

Từ \(f'\left(x_M\right)=f'\left(x_N\right)=k\) suy ra phương trình đường thẳng MN là :

\(y=\left(\frac{k}{3}-2\right)x+2-\frac{k}{3}\), khi đó \(A\left(1;0\right);B\left(0;\frac{6-k}{3}\right)\)

Ta có \(AB^2=10\Leftrightarrow k=15\) (do k > -3)

Từ đó ta có 2 tiếp tuyến cần tìm là :

\(y=15x-12\sqrt{6}-15\)

\(y=15x+12\sqrt{6}-15\)