K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

Gọi k là hệ số góc của tiếp tuyến tại M, N thì \(x_M;x_N\) là nghiệm của phương trình :

\(f'\left(x\right)=k\Leftrightarrow3x^2-6x-k=0\)

Để tồn tại hai tiếp điểm M, N thì phải có \(\Delta'>0\Leftrightarrow k>-3\)

Ta có \(y=f'\left(x\right)\left(\frac{1}{3}x-\frac{1}{3}\right)-2x+2\)

Từ \(f'\left(x_M\right)=f'\left(x_N\right)=k\) suy ra phương trình đường thẳng MN là :

\(y=\left(\frac{k}{3}-2\right)x+2-\frac{k}{3}\), khi đó \(A\left(1;0\right);B\left(0;\frac{6-k}{3}\right)\)

Ta có \(AB^2=10\Leftrightarrow k=15\) (do k > -3)

Từ đó ta có 2 tiếp tuyến cần tìm là :

\(y=15x-12\sqrt{6}-15\)

\(y=15x+12\sqrt{6}-15\)

20 tháng 2 2018

+ Gọi M(a; b)   là toạ độ của tiếp điểm

Đạo hàm y ' = - 1 ( 2 x + 3 ) 2 < 0 ;   ∀ x   .

+ Do tam giác OAB cân tại O  nên tiếp tuyến ∆ song song với đường thẳng y= -x (vì tiếp tuyến có hệ số góc âm). 

Nghĩa là 

-Với a= -1; b= 1   phương trình ∆: y- 1= -( x+ 1) hay y= -x ( loại) .

-Với a= -2; b= 0 thì ∆ : y- 0= -( x+ 2) hay y=-x-2 (nhận).

Vậy phương trình tiếp tuyến cần tìm là  y= -x- 2.

Chọn D.

9 tháng 11 2017

23 tháng 8 2017

Gọi với  là điểm cần tìm.

Gọi  tiếp tuyến của (C)  tại M ta có phương trình.

 

 

Gọi 

Khi đó tạo với hai trục tọa độ tam  giác OAB  có trọng tâm là

 

Do G  thuộc đường thẳng  4x+y=0 nên 

(vì A; B không trùng O nên   ) 

Vì x0>-1 nên chỉ chọn 

Chọn A.

18 tháng 6 2017

25 tháng 5 2018

Chọn: D

Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x 0  là:

Cho  x = 0

Cho  y = 0

∆ O A B   c â n   t ạ i   O ⇔ O A = O B

Với  x 0 = - 2

17 tháng 9 2019

Đáp án D

Cách giải:

Xét phương trình hoành độ giao điểm của (C) và đường thẳng y = 2x + m:

Dễ dàng kiểm tra được x = 2 không phải nghiệm của phương trình (*) với mọi m

Để phương trình (*) có 2 nghiệm phân biệt x1, x2 thì Δ > 0 ⇔ (m - 6)2 + 8(2m + 3) > 0 ⇔ m2 + 4m + 60 > 0, luôn đúng

Tiếp tuyến của (C) tại hai điểm giao song song với nhau

Vậy, có 1 giá trị thực của tham số m thỏa mãn yêu cầu đề bài.

4 tháng 1 2018

 Chọn A.

Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d

Khi đó d cắt (C) tại hai điểm phân biệt A; B khi và chi khi phương trình (1) có hai nghiệm phân biệt khác -1.

 trong đó x1, x2 là nghiệm của (1) (nên ta có Đề kiểm tra 45 phút Toán 12 Chương 1 Giải tích có đáp án (Đề 1)).

Suy ra hệ số góc của các tiếp tuyến tại điểm A và B lần lượt là

Vì tiếp tuyến tại A và B song song, đồng thời x1 ≠ x2 nên phải có

suy ra

Kết hợp điều kiện ,vậy không có giá trị nào của m thỏa mãn.

14 tháng 3 2017

+ Phương trình hoành độ giao điểm của đồ thị  C  và đường thẳng d

2 x + 1 x + 1 = x + m ⇔ x ≠ - 1 x 2 + ( m - 1 ) x + m - 1 = 0   ( 1 )

+ Khi đó d cắt C tại hai điểm phân biệt A; B  khi và chi khi phương trình (1)  có hai nghiệm phân biệt khác -1

⇔ ( m - 1 ) 2 - 4 ( m - 1 ) > 0 ( - 1 ) 2 - ( m - 1 ) + m - 1 ≠ 0 ⇔ m < 1 ∨ m > 5     ( * )

Khi đó ta lại có A( x; x1+m) ; B( x; x2+ m) ; 

A B → = ( x 2 - x 1 ;   x 2 - x 1 ) nên   A B = 2 ( x 2 - x 1 ) 2 = 2 x 2 - x 1

và  x 2 + x 1 = 1 - m x 2 . x 1 = m - 1

Từ đây ta có

A B = 10 ⇔ x 2 - x 1 = 5 ⇔ x 2 + x 1 2 - 4 x 2 x 1 = 5 ⇔ ( 1 - m ) 2 - 4 ( m - 1 ) = 5 ⇔ m 2 - 6 m = 0

Vậy m= 0 hoặc m= 6.

Chọn D.

29 tháng 4 2016

a. Ta có : \(y'=3x^2-6x+2\)

\(x_0=1\Leftrightarrow y_0=-6\) và \(y'\left(x_0\right)=y'\left(-1\right)=11\)

Suy ra phương trình tiếp tuyến là \(y=y'\left(-1\right)\left(x+1\right)-6=11x+5\)

 

b. Gọi \(M\left(x_0;6\right)\) là tiếp điểm, ta có :

\(x_0^3-3x_0^2+2x_0=6\Leftrightarrow\left(x_0-3\right)\left(x_0^2+2\right)=0\Leftrightarrow x_0=3\)

Vậy phương trình tiếp tuyến là :

 \(y=y'\left(3\right)\left(x-3\right)+6=11x-27\)

 

c. PTHD giao điểm của (C) với Ox :

\(x^3-3x^2+2x=0\Leftrightarrow x=0;x=1;x=2\)

\(x=0\) ta có tiếp tuyến : \(y=y'\left(0\right)\left(x-0\right)+0=2x\)

\(x=1\) ta có tiếp tuyến : \(y=y'\left(1\right)\left(x-1\right)+0=-x+1\)

\(x=2\) ta có tiếp tuyến : \(y=y'\left(2\right)\left(x-2\right)+0=2x-4\)