Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Gọi M(a; b) là toạ độ của tiếp điểm
Đạo hàm y ' = - 1 ( 2 x + 3 ) 2 < 0 ; ∀ x .
+ Do tam giác OAB cân tại O nên tiếp tuyến ∆ song song với đường thẳng y= -x (vì tiếp tuyến có hệ số góc âm).
Nghĩa là
-Với a= -1; b= 1 phương trình ∆: y- 1= -( x+ 1) hay y= -x ( loại) .
-Với a= -2; b= 0 thì ∆ : y- 0= -( x+ 2) hay y=-x-2 (nhận).
Vậy phương trình tiếp tuyến cần tìm là y= -x- 2.
Chọn D.
- Gọi với là điểm cần tìm.
- Gọi ∆ tiếp tuyến của (C) tại M ta có phương trình.
- Gọi
- Khi đó ∆ tạo với hai trục tọa độ tam giác OAB có trọng tâm là
- Do G thuộc đường thẳng 4x+y=0 nên
(vì A; B không trùng O nên )
- Vì x0>-1 nên chỉ chọn
Chọn A.
Chọn: D
Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x 0 là:
Cho x = 0
Cho y = 0
∆ O A B c â n t ạ i O ⇔ O A = O B
Với x 0 = - 2
Đáp án D
Cách giải:
Xét phương trình hoành độ giao điểm của (C) và đường thẳng y = 2x + m:
Dễ dàng kiểm tra được x = 2 không phải nghiệm của phương trình (*) với mọi m
Để phương trình (*) có 2 nghiệm phân biệt x1, x2 thì Δ > 0 ⇔ (m - 6)2 + 8(2m + 3) > 0 ⇔ m2 + 4m + 60 > 0, luôn đúng
Tiếp tuyến của (C) tại hai điểm giao song song với nhau
Vậy, có 1 giá trị thực của tham số m thỏa mãn yêu cầu đề bài.
Chọn A.
Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d
Khi đó d cắt (C) tại hai điểm phân biệt A; B khi và chi khi phương trình (1) có hai nghiệm phân biệt khác -1.
trong đó x1, x2 là nghiệm của (1) (nên ta có ).
Suy ra hệ số góc của các tiếp tuyến tại điểm A và B lần lượt là
Vì tiếp tuyến tại A và B song song, đồng thời x1 ≠ x2 nên phải có
suy ra
Kết hợp điều kiện ,vậy không có giá trị nào của m thỏa mãn.
+ Phương trình hoành độ giao điểm của đồ thị C và đường thẳng d
2 x + 1 x + 1 = x + m ⇔ x ≠ - 1 x 2 + ( m - 1 ) x + m - 1 = 0 ( 1 )
+ Khi đó d cắt C tại hai điểm phân biệt A; B khi và chi khi phương trình (1) có hai nghiệm phân biệt khác -1
⇔ ( m - 1 ) 2 - 4 ( m - 1 ) > 0 ( - 1 ) 2 - ( m - 1 ) + m - 1 ≠ 0 ⇔ m < 1 ∨ m > 5 ( * )
Khi đó ta lại có A( x1 ; x1+m) ; B( x2 ; x2+ m) ;
A B → = ( x 2 - x 1 ; x 2 - x 1 ) nên A B = 2 ( x 2 - x 1 ) 2 = 2 x 2 - x 1
và x 2 + x 1 = 1 - m x 2 . x 1 = m - 1
Từ đây ta có
A B = 10 ⇔ x 2 - x 1 = 5 ⇔ x 2 + x 1 2 - 4 x 2 x 1 = 5 ⇔ ( 1 - m ) 2 - 4 ( m - 1 ) = 5 ⇔ m 2 - 6 m = 0
Vậy m= 0 hoặc m= 6.
Chọn D.
a. Ta có : \(y'=3x^2-6x+2\)
\(x_0=1\Leftrightarrow y_0=-6\) và \(y'\left(x_0\right)=y'\left(-1\right)=11\)
Suy ra phương trình tiếp tuyến là \(y=y'\left(-1\right)\left(x+1\right)-6=11x+5\)
b. Gọi \(M\left(x_0;6\right)\) là tiếp điểm, ta có :
\(x_0^3-3x_0^2+2x_0=6\Leftrightarrow\left(x_0-3\right)\left(x_0^2+2\right)=0\Leftrightarrow x_0=3\)
Vậy phương trình tiếp tuyến là :
\(y=y'\left(3\right)\left(x-3\right)+6=11x-27\)
c. PTHD giao điểm của (C) với Ox :
\(x^3-3x^2+2x=0\Leftrightarrow x=0;x=1;x=2\)
* \(x=0\) ta có tiếp tuyến : \(y=y'\left(0\right)\left(x-0\right)+0=2x\)
* \(x=1\) ta có tiếp tuyến : \(y=y'\left(1\right)\left(x-1\right)+0=-x+1\)
* \(x=2\) ta có tiếp tuyến : \(y=y'\left(2\right)\left(x-2\right)+0=2x-4\)
Gọi k là hệ số góc của tiếp tuyến tại M, N thì \(x_M;x_N\) là nghiệm của phương trình :
\(f'\left(x\right)=k\Leftrightarrow3x^2-6x-k=0\)
Để tồn tại hai tiếp điểm M, N thì phải có \(\Delta'>0\Leftrightarrow k>-3\)
Ta có \(y=f'\left(x\right)\left(\frac{1}{3}x-\frac{1}{3}\right)-2x+2\)
Từ \(f'\left(x_M\right)=f'\left(x_N\right)=k\) suy ra phương trình đường thẳng MN là :
\(y=\left(\frac{k}{3}-2\right)x+2-\frac{k}{3}\), khi đó \(A\left(1;0\right);B\left(0;\frac{6-k}{3}\right)\)
Ta có \(AB^2=10\Leftrightarrow k=15\) (do k > -3)
Từ đó ta có 2 tiếp tuyến cần tìm là :
\(y=15x-12\sqrt{6}-15\)
\(y=15x+12\sqrt{6}-15\)