Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d
Khi đó d cắt (C) tại hai điểm phân biệt A; B khi và chi khi phương trình (1) có hai nghiệm phân biệt khác -1.
trong đó x1, x2 là nghiệm của (1) (nên ta có ).
Suy ra hệ số góc của các tiếp tuyến tại điểm A và B lần lượt là
Vì tiếp tuyến tại A và B song song, đồng thời x1 ≠ x2 nên phải có
suy ra
Kết hợp điều kiện ,vậy không có giá trị nào của m thỏa mãn.
Chọn C.
Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d
Khi đó d cắt (C) tại hai điểm phân biệt A, B khi và chỉ khi phương trình (1) có hai nghiệm phân biệt khác -1
Ta có
Và
Từ đây ta có
( thỏa mãn *)
Vậy chọn m = 0 hoặc m = 6
Phương trình hoành độ giao điểm
x3+2mx2+3(m-1)x+2 =-x+2 hay x(x2+2mx+3(m-1))=0
suy ra x=0 hoặc x2+2mx+3(m-1)=0 (1)
Đường thẳng d cắt (C) tại ba điểm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm phân biệt khác 0
⇔ m 2 - 3 m + 3 > 0 m - 1 ≠ 0 ⇔ ∀ m m ≠ 1 ⇔ m ≠ 1
Khi đó ta có: C( x1 ; -x1+2) ; B(x2 ; -x2+2) trong đó x1 ; x2 là nghiệm của (1) ; nên theo Viet thì x 1 + x 2 = - 2 m x 1 x 2 = 3 m - 3
Vậy
C B → = ( x 2 - x 1 ; - x 2 + x 1 ) ⇒ C B = 2 ( x 2 - x 1 ) 2 = 8 ( m 2 - 3 m + 3 )
d ( M ; ( d ) ) = - 3 - 1 + 2 2 = 2
Diện tích tam giác MBC bằng khi và chỉ khi
Chọn B.
Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)
Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn
Ta cần tìm B, C sao cho chi vi ABC lớn nhất
Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)
Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi tam giác ABC đều
\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)
Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)
Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)
\(\Rightarrow m=-1\)
Đáp án D
Cách giải:
Xét phương trình hoành độ giao điểm của (C) và đường thẳng y = 2x + m:
Dễ dàng kiểm tra được x = 2 không phải nghiệm của phương trình (*) với mọi m
Để phương trình (*) có 2 nghiệm phân biệt x1, x2 thì Δ > 0 ⇔ (m - 6)2 + 8(2m + 3) > 0 ⇔ m2 + 4m + 60 > 0, luôn đúng
Tiếp tuyến của (C) tại hai điểm giao song song với nhau
Vậy, có 1 giá trị thực của tham số m thỏa mãn yêu cầu đề bài.
+Ta có đạo hàm y’ = 3x2- 6mx+ 3( m+ 1) .
Do K thuộc ( C) và có hoành độ bằng -1, suy ra K( -1; -6m-3)
Khi đó tiếp tuyến tại K có phương trình
∆: y= ( 9m+ 6) x+ 3m+ 3
Đường thẳng ∆ song song với đường thẳng d
⇒ 3 x + y = 0 ⇔ y = - 3 x ⇔ 9 m + 6 = - 3 3 m + 3 ≠ 0 ⇔ m = - 1 m ≠ - 1
Vậy không tồn tại m thỏa mãn đầu bài.
Chọn D.
- Phương trình hoành độ giao điểm của d và (C) là
- Theo định lí Viet ta có x1+x2=-m;
Giả sử A( x1; y1); B( x2; y2).
- Ta có nên tiếp tuyến của (C) tại A và B có hệ số góc lần lượt là và .Vậy
- Dấu "=" xảy ra khi và chỉ khi m= -1.
Vậy k1+ k2 đạt giá trị lớn nhất bằng -2 khi m= -1.
Chọn A.
+ Phương trình hoành độ giao điểm của đồ thị C và đường thẳng d
2 x + 1 x + 1 = x + m ⇔ x ≠ - 1 x 2 + ( m - 1 ) x + m - 1 = 0 ( 1 )
+ Khi đó d cắt C tại hai điểm phân biệt A; B khi và chi khi phương trình (1) có hai nghiệm phân biệt khác -1
⇔ ( m - 1 ) 2 - 4 ( m - 1 ) > 0 ( - 1 ) 2 - ( m - 1 ) + m - 1 ≠ 0 ⇔ m < 1 ∨ m > 5 ( * )
Khi đó ta lại có A( x1 ; x1+m) ; B( x2 ; x2+ m) ;
A B → = ( x 2 - x 1 ; x 2 - x 1 ) nên A B = 2 ( x 2 - x 1 ) 2 = 2 x 2 - x 1
và x 2 + x 1 = 1 - m x 2 . x 1 = m - 1
Từ đây ta có
A B = 10 ⇔ x 2 - x 1 = 5 ⇔ x 2 + x 1 2 - 4 x 2 x 1 = 5 ⇔ ( 1 - m ) 2 - 4 ( m - 1 ) = 5 ⇔ m 2 - 6 m = 0
Vậy m= 0 hoặc m= 6.
Chọn D.