Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
Suy ra
Ta có
Ta có bảng biến thiên
Từ bảng biến thiên ta suy ra
Khi đó bất phương trình trở thành:
Xét hàm số với
Ta có
Suy ra hàm số f(t) nghịch biến trên
Chọn C.
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
Đáp án C
Phương trình
⇔ m x 2 + 2 x 3 − 2 x 2 + 2 x + 2 = 0 → t = x 2 + 2 x m t 3 − 2 t + 2 = 0 1
Ta có f x = x 2 + 2 x , x ≤ − 3 ⇒ f x ≥ 3 ⇒ t ∈ 3 ; + ∞
Khi đó 1 ⇔ m = 2 t 2 − 2 t 3 = f t với t ∈ 3 ; + ∞
Có f ' t = − 4 t 3 + 6 t 4 ⇒ f t nghịch biến trên 3 ; + ∞ ⇒ max 3 ; + ∞ f x ≤ f 3 = 4 27
Suy ra m ≤ max 3 ; + ∞ f x = 4 27 ⇒ có vô số nghiệm giá trị của m
Đặt g ( x ) = m x + m 2 5 - x 2 + 2 m + 1 f ( x ) thì g(x) là hàm số liên tục trên [-2;2]
Từ đồ thị =f(x) ta thấy có nghiệm đối dấu là x=1
Do đó để bất phương trình m x + m 2 5 - x 2 + 2 m + 1 f ( x ) ≥ 0 nghiệm đúng với mọi x ∈ - 2 ; 2 thì điều kiện cần là x=1 phải là nghiệm của h ( x ) = m x + m 2 5 - x 2 + 2 m + 1
h ( 1 ) = m + 2 m 2 + 2 m + 1 ⇔ [ m = - 1 m = - 0 , 5
Do bài cần m nguyên nên ta thử lại với m=-1
h ( x ) = 5 - x 2 - x - 1 ≥ 0 , ∀ x ∈ - 2 ; 1
và h ( x ) = 5 - x 2 - x - 1 ≤ 0 , ∀ x ∈ - 2 ; 1
Dựa theo dấu y=f(x) trên đồ thị ta suy ra
g ( x ) = m x + m 2 5 - x 2 + 2 m + 1 f ( x ) ≥ 0 , ∀ x ∈ - 2 ; 2
Vậy m=-1 thỏa mãn điều kiện bài ra.
Chọn đáp án A.
Bất phương trình tương đương với:
trong đó hàm số f ( t ) = t 3 + 3 t đồng biến trên R.
Vậy
Có 5 số nguyên thoả mãn.
Chọn đáp án D.