K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

Đạo hàm :  y ' = 3 + m ( cos   x - sin   x ) = 3 + m 2 cos ( x + π 4 )

Hàm số đồng biến trên R  khi  y’ ≥ 0 với mọi x

⇔ M i n ℝ   y ' ≥ 0 ⇔ 3 - m 2 ≥ 0 ⇔ m ≤ 3 2 → m ∈ ℤ m = 0 ;   m = ± 1 ;   m = ± 2 .

Vậy có 2 giá trị nguyên dương của m thỏa mãn đầu bài.

Chọn D.

22 tháng 4 2018

Chọn D

12 tháng 7 2017

Đáp án A

19 tháng 8 2018

Chọn C

Ta có

.

.

.

Để hàm số đã cho đồng biến trên , .

 

.

22 tháng 12 2019

21 tháng 8 2017

+ Tính đạo hàm  y ' = cos x + sin x + 2017 2 m .

y ' ≥ 0 ⇔ m ≥ - sin   x - cos   x 2017 2 = f ( x )

+ Theo bất đẳng thức Bunhiacopxki thì

( - sin x - cos x ) 2 ≤ ( - 1 ) 2 + ( - 1 ) 2 sin 2 x + cos 2 x = 2 - 2 ≤ ( - sin x - cos x ) ≤ 2

 Do đó : 

- 2 2017 2 ≤ f ( x ) ≤ 2 2017 2

F(x) đạt giá trị lớn nhất là  2 2017 2 = 1 2017 ⇒ m ≥ f ( m a x ) = 1 2017

Chọn C.

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

20 tháng 9 2017