K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

16 tháng 6 2018

Đáp án B

Đặt .

Với thì , hàm số trở thành .

Đạo hàm .

Hàm số đồng biến trên khi

.

Vậy có 9 giá trị nguyên của m

15 tháng 1 2021

\(y'=-3.\dfrac{1}{3}.\cos^2x.\sin x+\dfrac{4}{\sin^2x}+\left(m+1\right)\sin x=\left(\sin^2-1\right)\sin x+\dfrac{4}{\sin^2x}+m.\sin x+\sin x\)

\(=\sin^3x+\dfrac{4}{\sin^2x}+m.\sin x\)

y đồng biến trên khoảng \(\left(0;\pi\right)\)  \(\Leftrightarrow y'\ge0,\forall x\in\left(0;\pi\right)\)

\(\Leftrightarrow\sin^3x+\dfrac{4}{\sin^2x}+m.\sin x\ge0\Leftrightarrow\sin^2x+\dfrac{4}{\sin^3x}\ge-m\)

\(f\left(x\right)=\sin^2x+\dfrac{4}{\sin^3x}\Rightarrow f'\left(x\right)=2.\sin x.\cos x-\dfrac{12\cos x}{\sin^4x}=2\cos x.\left(\sin x-\dfrac{6}{\sin^4x}\right)\)

\(f'\left(x\right)=0\Rightarrow2\cos x\left(\sin x-\dfrac{6}{\sin^4x}\right)=0\)

\(\Rightarrow x=\dfrac{\pi}{2}\in\left[0;\pi\right]\)

\(\Rightarrow\sin^2x+\dfrac{4}{\sin^3x}\ge-m\Leftrightarrow-m\le min_{x\in\left(0;\pi\right)}f\left(x\right)\)

\(\Leftrightarrow m\ge-5\Rightarrow m\in\left\{-5;-4;-3;-2;-1\right\}\)

Có 5 giá trị m t/m

P/s: Mới học đạo hàm nên thử sức xí :v

NV
20 tháng 6 2021

\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)

a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)

Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)

TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)

Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m

NV
20 tháng 6 2021

b.

Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x< 0\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)

TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Kết hợp lại ta được: \(m\ge2\)

9 tháng 12 2018

6 tháng 7 2023

tick cho tớ

MN
30 tháng 8

Để hàm số \(y = (m^2-1)x^3 + (m-1)x^2 - x + 4\) nghịch biến trên khoảng \((-∞;+∞)\), ta cần xác định điều kiện để đạo hàm của hàm số này luôn âm hoặc dương trên khoảng đó. Đạo hàm của hàm số theo x là: \[y' = 3(m^2-1)x^2 + 2(m-1)x - 1\] Để hàm số nghịch biến trên khoảng \((-∞;+∞)\), ta cần giải phương trình \(y' = 0\) và xác định điều kiện để \(y' > 0\) hoặc \(y' < 0\) trên khoảng đó. Giải phương trình \(y' = 0\): \[3(m^2-1)x^2 + 2(m-1)x - 1 = 0\] Điều kiện để hàm số nghịch biến là \(y' > 0\) hoặc \(y' < 0\), ta cần xác định điều kiện của \(m\) sao cho đồng biến hoặc nghịch biến trên khoảng \((-∞;+∞)\). Vậy, số nguyên \(m\) thoả mãn là số nguyên nào?