Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
câu b sai đầu bài
a) a-b chia hết cho 6=>a-b+6b chia hết cho 6( vì 6b chia hết cho 6)=>a+ 5b chia hết cho 6
a) \(\left(a+b\right)⋮6\Leftrightarrow\left(a+b\right)-6.4b⋮6\Leftrightarrow\left(a-23b\right)⋮6\).
b) \(\left(a+b\right)⋮7\Leftrightarrow\left(a+b\right)-7.3b⋮7\Leftrightarrow\left(a-20b\right)⋮7\).
Chứng minh A chia hết cho 7
A=\(2+2^2+2^3+...+2^{12}\)
=>A= \(2.\left(1+2+4\right)+2^4.\left(1+2+4\right)+2^7.\left(1+2+4\right)+2^{10}.\left(1+2+4\right)\)
=>A= \(2.7+2^4.7+2^7.7+2^{10}.7\)
=>A= \(\left(2+2^4+2^7+2^{10}\right).7\)
VẬY A CHIA HẾT CHO 7