Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy :
2n-1 ; 2n ;2n+1 là 3 số tự nhiên liên tiếp
=>phải có một số chia hết cho 3
Mà 2n không chia hết cho 3 vìa 2 ko chia hết cho 3
=>hoặc 2n-1 hoặc 2n+1 chia hết cho 3
=>hoặc 2n-1 hoặc 2n+1 là hợp số
Giả sử cả 2 số đều chia hết cho 5
=> a - b chia hết cho 5
=> 22n + 1 + 2n + 1 + 1 - (22n + 1 - 2n + 1 + 1) = 2.2n+1 chia hết cho 5
=> 2n+2 chia hết cho 5 . Điều này không xảy ra vì 2n+2 không tận cùng bằng 0 ; 5
=> Phải có ít nhất a hoặc b không chia hết cho 5
a = 22n+1 + 2n+1 + 1 = (22)n.21 + 2n.21 + 1 = 4n.2 + 2n.2 + 1 = 2.(4n.2n) + 1
Vì 2.(4n.2n) là số chẵn nên 2.(4n.2n) + 1 là số lẻ mà 4n.2n \(\ne\) (... 0) nên 2.(4n.2n) + 1 \(\ne\) 0 , do đó a không chia hết cho 5.
b = 22n+1 - 2n+1 + 1 = (22)n.21 - 2n.21 + 1 = 4n.2 - 2n.2 + 1 = 2.(4n-2n) + 1
Vì 2.(4n.2n) là số chẵn nên 2.(4n.2n) - 1 là số lẻ, mà 4n.2n \(\ne\) (... 0) nên 2.(4n.2n) + 1 \(\ne\) 0 do đó b không chia hết cho 5.
Suy ra điều phải chứng minh
Giả sử trong 2n số nguyên dương đầu tiên có đúng m số nguyên tố là p1;p2,...;pm.Dễ chứng minh được rằng m⩽n
Chia 2n số nguyên dương đó thành m+1 tập con (có thể giao nhau) :A0;A1;A2;...;Am, trong đó :
A0={1}
Ai (1⩽i⩽m) gồm pi và tất cả các bội của nó trong 2n số nguyên dương đầu tiên.
Xét 2 trường hợp:
+) m < n
Khi đó m + 1 < n + 1⇒ trong n+1 số bất kỳ (chọn trong 2n số đó) chắc chắn có 2 số thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.
+) m = n
+ Nếu trong n+1 số đó có số 1 (thuộc tập Ao) thì đpcm là hiển nhiên.
+ Nếu trong n+1 số đó không có số nào thuộc tập A0 thì chúng chỉ nằm trong m tập con còn lại.
Vì m<n+1 nên có ít nhất 2 số (trong n+1 số đó) thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.
Như vậy, trong mọi trường hợp, luôn tìm được 2 số là bội của nhau từ n+1 số bất kỳ chọn trong 2n số nguyên dương đầu tiên.
Nguồn: https://diendantoanhoc.net/topic/132810-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-t%E1%BB%AB-n1-s%E1%BB%91-b%E1%BA%A5t-k%C3%AC-trong-2n-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-%C4%91%E1%BA%A7u-ti%C3%AAn-lu%C3%B4n-t%C3%ACm-%C4%91%C6%B0%E1%BB%A3c-hai-s%E1%BB%91-l%C3%A0-b%E1%BB%99i-c/
Mình cx bí bày này nên giải lại cho hiểu kĩ
từ đề bài suy ra 10<=n<=99,suy ra 21<=2n+1<=199
. vì 2n+1 là số lẻ nên có các giá trị là 25,49,81,121,169 tương ứng n có các giá trị 12,24,40,60,80
mà 3n+1 có các giá trị 37,73,121,181,253,nên chỉ có 121 là chung
suy ra:n=40
Ta có 10 <= n <= 99 nên 21 <= 2n + 1 <= 199
Tìm số chính phương lẻ trong khoảng trên ta được 2n + 1 bằng 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84
Số 3n + 1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương. Vậy n = 40