K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
1 tháng 12 2017
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
Giả sử cả 2 số đều chia hết cho 5
=> a - b chia hết cho 5
=> 22n + 1 + 2n + 1 + 1 - (22n + 1 - 2n + 1 + 1) = 2.2n+1 chia hết cho 5
=> 2n+2 chia hết cho 5 . Điều này không xảy ra vì 2n+2 không tận cùng bằng 0 ; 5
=> Phải có ít nhất a hoặc b không chia hết cho 5
a = 22n+1 + 2n+1 + 1 = (22)n.21 + 2n.21 + 1 = 4n.2 + 2n.2 + 1 = 2.(4n.2n) + 1
Vì 2.(4n.2n) là số chẵn nên 2.(4n.2n) + 1 là số lẻ mà 4n.2n \(\ne\) (... 0) nên 2.(4n.2n) + 1 \(\ne\) 0 , do đó a không chia hết cho 5.
b = 22n+1 - 2n+1 + 1 = (22)n.21 - 2n.21 + 1 = 4n.2 - 2n.2 + 1 = 2.(4n-2n) + 1
Vì 2.(4n.2n) là số chẵn nên 2.(4n.2n) - 1 là số lẻ, mà 4n.2n \(\ne\) (... 0) nên 2.(4n.2n) + 1 \(\ne\) 0 do đó b không chia hết cho 5.
Suy ra điều phải chứng minh