Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.
Ta có: n^2 + n + 2 = n﴾n+1﴿ + 2.
n﴾n+1﴿ là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n﴾n+1﴿+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n﴾n+1﴿+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.
Xet \(n=3k\)
\(\left(3k\right)^2+3k+2\equiv2\left(mod3\right)\)
Xet \(n=3k+1\)
\(\left(3k+1\right)^2+3k+1+2\equiv4\equiv1\left(mod3\right)\)
Xet \(n=3k+2\)
\(\left(3k+2\right)^2+3k+2+2\equiv1+2+2\equiv2\left(mod3\right)\)
\(\Rightarrow n^2+n+2⋮̸3\)
\(\Rightarrow n^2+n+2⋮̸15\)
A = 4n + 4n + 16 = 2.4n + 16
Có 4 đồng dư với 1 (mod 3)
=> 4n đồng dư với 1(mod 3)
=> 2.4n đồng dư với 2(mod 3)
Mà 16 đồng dư với 1(mod 3)
=> 2.4n + 16 đồng dư với 1+2=3(mod 3)
Hay A chia hết cho 3 với mọi số nguyên dương n
n4 - n2 = n2(n2 - 1) = n2(n - 1)(n + 1)
Vì n, n - 1, n + 1 là 3 số nguyên liên tiếp => có ít nhất 1 số chia hết cho 3 => (n - 1)n(n + 1) ⋮ 3 => n2(n - 1)(n + 1) ⋮ 3 (1)
Vì n, n - 1, n + 1 là 3 số nguyên liên tiếp => có ít nhất một số chia hết cho 2.
Giả sử số chia hết cho 2 đó là n - 1 => n + 1 cũng chia hết cho 2 => (n -1)(n + 1) ⋮ 4 => n2(n - 1)(n + 1) ⋮ 4
Nếu số chia hết cho 2 đó là n + 1, lập luận tương tự ta cũng có n2(n - 1)(n + 1) ⋮ 4
Nếu n ⋮ 2 => n2 ⋮ 4 => n2(n - 1)(n + 1) ⋮ 4
Như vậy n2(n - 1)(n + 1) ⋮ 4 (2)
Từ (1) và (2) => n4 - n2 ⋮ 3 và 4 mà ƯCLN(3;4) = 1
=> n4 - n2 ⋮ 12
Đặt A=n^2+7n+22
Giả sử A=n^2+7n+22 chia hết cho 9 thì A cũng chia hết cho 3
=> n^2+7n+22-3(3n+7)=n^2+7n+22-9n-21=n^2-2n+1=(n-1)^2 cũng chia hết cho 3 ,mà n E Z => n-1 cũng chia hết cho 3
Vì n-1 chia hết cho 3,đặt n-1=3k=>n=3k+1
Thay n=3k+1 vào A,ta có A=(3k+1)^2+7(3k+1)+22=9k^2+6k+1+21k+7+22=9k^2+27k+30 không chia hết cho 9,vậy điều giả sử là sai => đpcm
Vì đây là 7 số liên tiếp
nên A chia hết cho 7!
=>A chia hết cho 210
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N
Ta có: n2+n+2=n(n+1)+2
Để số trên chia hết cho 15 thì số trên phải chia hết cho 3 và 5.
Mà tích của 2 số tự nhiên liên tiếp có tận cùng là 0,2,6.
Mà số trên cộng với 2 có tận cùng sẽ là 2,4,8. ( không chia hết cho 5).
Vậy số trên không chia hết cho 15.