K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

Đặt A=n^2+7n+22

Giả sử A=n^2+7n+22 chia hết cho 9 thì A cũng chia hết cho 3 

=> n^2+7n+22-3(3n+7)=n^2+7n+22-9n-21=n^2-2n+1=(n-1)^2 cũng chia hết cho 3 ,mà n E Z => n-1 cũng chia hết cho 3

Vì n-1 chia hết cho 3,đặt n-1=3k=>n=3k+1

Thay n=3k+1 vào A,ta có A=(3k+1)^2+7(3k+1)+22=9k^2+6k+1+21k+7+22=9k^2+27k+30 không chia hết cho 9,vậy điều giả sử là sai => đpcm

10 tháng 12 2016

Chứng minh bằng phản chứng : 

Giả sử rằng tồn tại ít nhất một số tự nhiên n sao cho thỏa mãn \(n^2+7n+2014\) chia hết cho 9

Khi đó đặt n = 9k (k thuộc N)
 

Ta có \(n^2+7n+2014=\left(9k\right)^2+7.\left(9k\right)+2014=9.\left(9k^2+7k+223\right)+7\)

Từ đó ta thấy ngay điều giả sử sai, suy ra đpcm.

11 tháng 12 2016

Ta có

A = n2 + 7n + 2014 = (n + 2)(n + 5) + 2004

Giả sử A chia hết cho 9 thì A = 9k 

=> (n + 2)(n + 5) + 2004 = 9k (k tự nhiên)

Ta thấy 2004 chia hết cho 3 nên (n + 2)(n + 5) chia hết cho 3. Vậy 1 trong hai thừa số phải chia hết cho 3

Mà n + 5 - n - 2 = 3 chia hết cho 3 nên cả (n + 5) và (n + 2) đều chia hết cho 3.

Hay (n + 5)(n + 2) chia hết cho 9.

Mà A lại chia hết cho 9 nên 2004 chia hết cho 9 (vô lý)

Vậy không tồn tại số tự nhiên nào để A chia hết cho 9

29 tháng 8 2015

khó tek ai mà lm đc@@@@