Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh bằng phản chứng :
Giả sử rằng tồn tại ít nhất một số tự nhiên n sao cho thỏa mãn \(n^2+7n+2014\) chia hết cho 9
Khi đó đặt n = 9k (k thuộc N)
Ta có \(n^2+7n+2014=\left(9k\right)^2+7.\left(9k\right)+2014=9.\left(9k^2+7k+223\right)+7\)
Từ đó ta thấy ngay điều giả sử sai, suy ra đpcm.
Ta có
A = n2 + 7n + 2014 = (n + 2)(n + 5) + 2004
Giả sử A chia hết cho 9 thì A = 9k
=> (n + 2)(n + 5) + 2004 = 9k (k tự nhiên)
Ta thấy 2004 chia hết cho 3 nên (n + 2)(n + 5) chia hết cho 3. Vậy 1 trong hai thừa số phải chia hết cho 3
Mà n + 5 - n - 2 = 3 chia hết cho 3 nên cả (n + 5) và (n + 2) đều chia hết cho 3.
Hay (n + 5)(n + 2) chia hết cho 9.
Mà A lại chia hết cho 9 nên 2004 chia hết cho 9 (vô lý)
Vậy không tồn tại số tự nhiên nào để A chia hết cho 9
Đặt A=n^2+7n+22
Giả sử A=n^2+7n+22 chia hết cho 9 thì A cũng chia hết cho 3
=> n^2+7n+22-3(3n+7)=n^2+7n+22-9n-21=n^2-2n+1=(n-1)^2 cũng chia hết cho 3 ,mà n E Z => n-1 cũng chia hết cho 3
Vì n-1 chia hết cho 3,đặt n-1=3k=>n=3k+1
Thay n=3k+1 vào A,ta có A=(3k+1)^2+7(3k+1)+22=9k^2+6k+1+21k+7+22=9k^2+27k+30 không chia hết cho 9,vậy điều giả sử là sai => đpcm