K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

a. m.n(\m4−\n4)m.n(\m4−\n4)
Đặt A=m.n( m4− n4)A=m.n( m4− n4)
A=m.n( m2− n2)( m2+ n2)A=m.n( m2− n2)( m2+ n2)
A=m.n(m−n)(m+n)( m2+\n2)A=m.n(m−n)(m+n)( m2+\n2)
Nếu m hoặc n chia hết cho 2 thì A chia hết cho 2
Giả sử m,n đều không chia hết cho 2
Lúc đó ta có (m-n) hoặc (m+n) chia hết cho 2
=>A chia hết cho 2
Nếu m hoặc n chia hết cho 3 thì A chia hết cho 3
Giả sử m,n đều ko chia hết cho 3
Lúc đó ta có
 m2−1 m2−1 chia hết cho 3
 n2−1 n2−1 chia hết cho 3
=> m2− n2 m2− n2 chia hết cho 3
=>A chia hết cho 3
Mà (2,3)=1 =>A chia hết cho 2.3=6
Nếu m hoặc n chia hết cho 5 thi A chia hết cho 5
Giả sử m,n không chia hết cho 5
Lúc đó ta có
 m4−1 m4−1 chia hết cho 5
 n4−1 n4−1 chia hết cho 5
=>A chia hết cho 5
Mà (5,6)=1
=>A chia hết cho 5.6=30

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Thống nhất biểu thức là $A=n^4+5n^2+9$ bạn nhé, không phải $x$.

Lời giải:
Giả sử $n^4+5n^2+9\vdots 121$

$\Rightarrow n^4+5n^2+9\vdots 11$

$\Rightarrow n^4+5n^2-11n^2+9\vdots 11$

$\Rightarrow n^4-6n^2+9\vdots 11$

$\Rightarrow (n^2-3)^2\vdots 11$

$\Rightarrow n^2-3\vdots 11$

Đặt $n^2-3=11k$ với $k$ nguyên

Khi đó: $n^4+5n^2+9=(11k+3)^2+5(11k+3)+9=121k^2+121k+33\not\vdots 121$ (trái với giả sử)

Vậy giả sử là sai. Tức là với mọi số nguyên $n$ thì $n^4+5n^2+9$ không chia hết cho $121$

13 tháng 11 2018

co vi 30=6.5

kb

hoc tot

2 tháng 10 2015

3n+2-2n+2+3n-2n

= ( 3n+2+3n)-(2n+2+2n)

= 3n(32+1)-2n(22+1)

= 3n.10-2n-1.10=10(3n-2n-1) chia het cho 10

b) 7n+4-7n=7n(74-1)=7n.2400

Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30

Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N

c) 62n+3n+2+3n=22n.3n+3n(32+1)

=22n.32n+3n.11 chia het cho 11

đ) câu hỏi tương tự nhé

l-i-k-e mình nhé

20 tháng 1 2016

n5 - n = n.(n4 - 1) = n.(n4 - 1).(n4 + 1)= n.(n-1).(n+1).(n4+1) (*)

Ta nhận thấy trong 3 thừa số n, n-1, n+1 thì có 1 số chia hết cho 3 vì đây là 3 số tự nhiên liên tiếp. 
Trong 3 số đó cũng phải có một số chẵn nên tích của chúng chia hết cho 2. 
Vì 2 và 3 nguyên tố cùng nhau nên tích 3 số đó sẽ chia hết cho 6. 
Bây giờ ta chứng minh (*) chia hết cho 5 như sau: 

Nếu n chia hết cho 5 thì dĩ nhiên (*) chia hết cho 5. 
Nếu n chia cho 5 dư 1 hoặc dư 4 thì dĩ nhiên n-1 hoặc n+4 tương ứng sẽ chia hết cho 5. 
Nếu n chia cho 5 dư 2 hoặc 3 thì n có dạng : 
n= 5k+2 hoặc 5k + 3 
Khi đó n2 +1 : 
Hoặc bằng: (5k+2)2 +1 = 25k2 + 20k +4 + 1= 5(5k2 + 4k +1) , dĩ nhiên nó chia hết cho 5. 
Hoặc bằng: (5k+3)2 +1 = 25k2 + 30k +9 + 1= 5(5k2 + 6k +2) , dĩ nhiên nó cũng chia hết cho 5. 
Vậy với mọi trường hợp khi n chia cho 5 có số dư là bao nhiêu, thì (*) cũng chia hết cho 5. 

(*) chia hết cho 5 và cho 6, mà 5 và 6 nguyên tố cùng nhau nên (*) chia hết cho 30.

20 tháng 1 2016

toán ko phải lớp 6 

31 tháng 12 2017

a)  A  =  1 + 2 + 22 + 23 + ...... + 239

= (1 + 2 + 2+ 23) + (24 + 25 + 26 + 27) + .....+ (236 + 237 + 238 + 239)

= (1 + 2 + 22 + 23) + 24(1 + 2 + 22 + 23) + .......+ 236(1 + 2 + 22 + 23)

= 15 (1 + 24 + ...... + 236 )  \(⋮15\)

Vậy  A là bội của 15

b)   B = 2 + 22 + 23 + ...... + 22004

= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ...... + (22001 + 22002 + 22003 + 22004)

= 2(1 + 2 + 23 + 24) + 25(1 + 2 + 2+ 23) + ....... + 22001(1 + 2 + 22 +23)

= 15 (2 + 25 + ..... + 22001)           \(⋮15\)

Ta thấy B \(⋮2\)(vì các số hạng của B đều chia hết cho 2)

mà  (2; 15) = 1

nên  B \(⋮30\)

c)  Gọi 3 số lẻ liên tiếp là:  2k+1; 2k+3; 2k+5

Ta có:   2k+1 + 2k+3 + 2k+5 = 6k + 9

Ta thấy   6k   chia hết cho 6 nhưng  9 ko chia hết cho 6

nên  6k + 9  ko chia hết cho 6

Vậy tổng của 3 số lẻ liên tiếp ko chia hết cho 6