K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
2 tháng 10 2015
3n+2-2n+2+3n-2n
= ( 3n+2+3n)-(2n+2+2n)
= 3n(32+1)-2n(22+1)
= 3n.10-2n-1.10=10(3n-2n-1) chia het cho 10
b) 7n+4-7n=7n(74-1)=7n.2400
Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30
Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N
c) 62n+3n+2+3n=22n.3n+3n(32+1)
=22n.32n+3n.11 chia het cho 11
đ) câu hỏi tương tự nhé
l-i-k-e mình nhé
P
0
n5 - n = n.(n4 - 1) = n.(n4 - 1).(n4 + 1)= n.(n-1).(n+1).(n4+1) (*)
Ta nhận thấy trong 3 thừa số n, n-1, n+1 thì có 1 số chia hết cho 3 vì đây là 3 số tự nhiên liên tiếp.
Trong 3 số đó cũng phải có một số chẵn nên tích của chúng chia hết cho 2.
Vì 2 và 3 nguyên tố cùng nhau nên tích 3 số đó sẽ chia hết cho 6.
Bây giờ ta chứng minh (*) chia hết cho 5 như sau:
Nếu n chia hết cho 5 thì dĩ nhiên (*) chia hết cho 5.
Nếu n chia cho 5 dư 1 hoặc dư 4 thì dĩ nhiên n-1 hoặc n+4 tương ứng sẽ chia hết cho 5.
Nếu n chia cho 5 dư 2 hoặc 3 thì n có dạng :
n= 5k+2 hoặc 5k + 3
Khi đó n2 +1 :
Hoặc bằng: (5k+2)2 +1 = 25k2 + 20k +4 + 1= 5(5k2 + 4k +1) , dĩ nhiên nó chia hết cho 5.
Hoặc bằng: (5k+3)2 +1 = 25k2 + 30k +9 + 1= 5(5k2 + 6k +2) , dĩ nhiên nó cũng chia hết cho 5.
Vậy với mọi trường hợp khi n chia cho 5 có số dư là bao nhiêu, thì (*) cũng chia hết cho 5.
(*) chia hết cho 5 và cho 6, mà 5 và 6 nguyên tố cùng nhau nên (*) chia hết cho 30.
toán ko phải lớp 6