K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

a. Xét hiệu: \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\)

=\(\dfrac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\)

\(=\dfrac{a^2-2ab+b^2}{ab\left(a+b\right)}=\dfrac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

Vì a,b>0

Xảy ra đẳng thức khi và chỉ khi a=b

6 tháng 4 2017

a) Ta có: \(\left(a-b\right)^2\ge0\left(1\right)\forall a,b\)

( Dấu = xày ra khi và chỉ khi a=b)

Cộng 4ab vào 2 vế, ta có:

\(\left(a-b\right)^2+4ab\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)

Chia 2 vế cho ab(a+b)>0, ta có:

\(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\)\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

b) Ta có:

\(2p=a+b+c\)

\(p-a=\dfrac{a+b+c}{2}-a=\dfrac{b+c-a}{2}>0\) vì b+c>a

Tương tự: \(p-b>0,p-c>0\)

Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)cho từng cặp số p-a, p-b; p-b,p-c;p-c,p-a

Ta có:

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{\left(p-a\right)+\left(p-b\right)}=\dfrac{4}{2p-\left(a+b\right)}=\dfrac{4}{c}\left(1\right)\)

Tương tự:

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a}\left(2\right)\)

\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{b}\left(3\right)\)

Cộng các BĐT cùng chiều (1), (2), (3) vế theo vế, ta có:

\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Do đó: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

8 tháng 2 2022

Ta có :

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{2}{c}\)

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{p-a+p-c}=\dfrac{2}{a}\)

\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{p-c+p-a}=\dfrac{2}{b}\)

Cộng từng về ta có đpcm

8 tháng 2 2022

Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)

Áp dụng:

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{4}{2p-a-b}\)

Mà \(2p=a+b+c\)

\(\Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{a+b+c-a-b}=\dfrac{4}{c}\)

Tương tự \(\Rightarrow2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\)

\(\Rightarrowđpcm\)

8 tháng 3 2018

BĐT cô si: \(\dfrac{x+y}{2}>\left(hoặc=\right)\sqrt{xy}\)

=>x+y >(hoặc =) \(2\sqrt{xy}\)

=>\(\left(x+y\right)^2>\left(hoặc=\right)4xy\)

=>\(\dfrac{1}{x}+\dfrac{1}{y}>\left(hoặc=\right)\dfrac{4}{x+y}\)

vì P=\(\dfrac{a+b+c}{2}=>a+b+c=2p\)

=>c=2p-a-b

b=2p-a-c

a=2p-b-c

ta có:\(\dfrac{1}{p-a}+\dfrac{1}{p-b}>hoặc=\dfrac{4}{p-a+p-b}=\dfrac{4}{c}\)

\(\dfrac{1}{p-a}+\dfrac{1}{p-c}>\left(hoặc=\right)\dfrac{4}{p-a+p-c}=\dfrac{4}{b}\)

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}>\left(hoặc=\right)\dfrac{4}{p-b+p-c}=\dfrac{4}{a}\)

cộng vế với vế ta đc

\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)>\left(hoặc=\right)4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

<=>\(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}>\left(hoặc=\right)2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

6 tháng 11 2018

Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé!

AH
Akai Haruma
Giáo viên
26 tháng 11 2018

Bài 1:

Vì $a,b,c$ là 3 cạnh tam giác nên \(b+c-a; c+a-b; a+b-c>0\)

Áp dụng BĐT AM-GM cho các số dương:

\(\frac{a^2}{b+c-a}+(b+c-a)\geq 2\sqrt{a^2}=2a\)

\(\frac{b^2}{a+c-b}+(a+c-b)\geq 2\sqrt{b^2}=2b\)

\(\frac{c^2}{a+b-c}+(a+b-c)\geq 2\sqrt{c^2}=2c\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\geq 2(a+b+c)\)

\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\geq a+b+c\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
26 tháng 11 2018

Bài 2:

Áp dụng BĐT AM-GM cho các số dương ta có:

\(ab+\frac{a}{b}\geq 2\sqrt{ab.\frac{a}{b}}=2a\)

\(ab+\frac{b}{a}\geq 2\sqrt{ab.\frac{b}{a}}=2b\)

\(\frac{a}{b}+\frac{b}{a}\geq 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

Cộng theo vế và rút gọn:

\(\Rightarrow 2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)\)

\(\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=1$

NV
5 tháng 4 2022

1.

BĐT cần chứng minh tương đương:

\(\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

Ta có:

\(\left(ab-1\right)^2=a^2b^2-2ab+1=a^2b^2-a^2-b^2+1+a^2+b^2-2ab\)

\(=\left(a^2-1\right)\left(b^2-1\right)+\left(a-b\right)^2\ge\left(a^2-1\right)\left(b^2-1\right)\)

Tương tự: \(\left(bc-1\right)^2\ge\left(b^2-1\right)\left(c^2-1\right)\)

\(\left(ca-1\right)^2\ge\left(c^2-1\right)\left(a^2-1\right)\)

Do \(a;b;c\ge1\)  nên 2 vế của các BĐT trên đều không âm, nhân vế với vế:

\(\left[\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\right]^2\ge\left[\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\right]^2\)

\(\Rightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Câu 2 em kiểm tra lại đề có chính xác chưa

NV
5 tháng 4 2022

2.

Câu 2 đề thế này cũng làm được nhưng khá xấu, mình nghĩ là không thể chứng minh bằng Cauchy-Schwaz được, phải chứng minh bằng SOS

Không mất tính tổng quát, giả sử \(c=max\left\{a;b;c\right\}\)

\(\Rightarrow\left(c-a\right)\left(c-b\right)\ge0\) (1)

BĐT cần chứng minh tương đương:

\(\dfrac{1}{a}-\dfrac{a+b}{bc+a^2}+\dfrac{1}{b}-\dfrac{b+c}{ac+b^2}+\dfrac{1}{c}-\dfrac{c+a}{ab+c^2}\ge0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)+a\left(c-b\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow c\left(b-a\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{b^3+abc}\right)+a\left(c-b\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{c^3+abc}\right)\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)\left(b^3-a^3\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c^3-a^3\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)^2\left(a^2+ab+b^2\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c-a\right)\left(a^2+ac+c^2\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

Đúng theo (1)

Dấu "=" xảy ra khi \(a=b=c\)

14 tháng 9 2017

Khó quá. Đúng là Câu Hỏi Hay!!

a)Áp dụng BĐT AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân theo vế 2 BĐT trên có:

\(A\ge9\sqrt[3]{abc\cdot\dfrac{1}{abc}}=9\)

Khi \(a=b=c\)

Bài 2:

a)Sửa đề \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)

Khi \(x=y\)

b)Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:

\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{4}{2b}=\dfrac{2}{b}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c};\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\ge\dfrac{2}{a}\)

Cộng theo vế 3 BĐT trên ta có:

\(2VT\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2VP\Leftrightarrow VT\ge VP\)

Khi \(a=b=c\)

14 tháng 9 2017

Câu 1: Với \(a;b;c>0\), theo bất đẳng thức Cauchy:

\(a+b+c\ge3.\sqrt[3]{abc}\). Dấu "=" xảy ra khi \(a=b=c\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3.\sqrt[3]{\dfrac{1}{abc}}\). Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)

Nhân theo vế ta được \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

\(\Rightarrow MinA=9\)

Dấu "=" xảy ra khi a = b = c

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng