K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

Ý em là a^2+b^2+2>= 2(a+b) ?

Đề <=> a^2-2a+1+b^2-2b+1>=0

<=> (a-1)^2 + (b-1)^2>=0 (đúng)

=> bđt đúng

13 tháng 9 2018

a) Ta có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)( chia 2 vế cho 2 )

b) \(\frac{a+1}{a}\)chưa lớn hơn hoặc bằng 2 đc , bạn thay a=2 vào thì 3/2<2

c) Ta có \(x^2\ge0\);\(y^2\ge0\);\(z^2\ge0\)

nên \(x^2+y^2+z^2\ge0\)

\(\Rightarrow x^2+y^2+z^2+3\ge3\)

13 tháng 9 2018

Ta có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)

29 tháng 3 2022

-Sửa đề: \(a,b>0\)

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{a}\)

\(\Leftrightarrow\dfrac{a^4+b^4}{a^2b^2}\ge\dfrac{a^2+b^2}{ab}\)

\(\Leftrightarrow a^3b^3.\dfrac{a^4+b^4}{a^2b^2}\ge a^3b^3.\dfrac{a^2+b^2}{ab}\)

\(\Leftrightarrow\left(a^4+b^4\right)ab\ge\left(a^2+b^2\right)a^2b^2\)

\(\Leftrightarrow\left(a^4+b^4\right)ab-\left(a^2+b^2\right)a^2b^2=0\)

\(\Leftrightarrow ab\left[a^4+b^4-\left(a^2+b^2\right)ab\right]\ge0\)

\(\Leftrightarrow ab\left(a^4+b^4-a^3b-ab^3\right)\ge0\)

\(\Leftrightarrow ab\left[a^3\left(a-b\right)+b^3\left(b-a\right)\right]\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (đúng)

 

 

\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

=>a=b=c=1

20 tháng 10 2018

a, \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(a+c\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\) (đpcm)

b, Từ \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\) hay ayz+bxz+cxy=0

Từ \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{cxy+ayz+bzx}{abc}=1\)

Mà ayz+bxz+cxy=1

=>\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\) (đpcm)

20 tháng 10 2018

sửa lại Mà ayz+bzx+cxy=0 nhé

15 tháng 9 2016

Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé

15 tháng 9 2016

bài 1 :

 Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2 
--> a + b + c = 2 

Trong 1 tam giác thì ta có: 
a < b + c 
--> a + a < a + b + c 
--> 2a < 2 
--> a < 1 

Tương tự ta có : b < 1, c < 1 

Suy ra: (1 - a)(1 - b)(1 - c) > 0 
⇔ (1 – b – a + ab)(1 – c) > 0 
⇔ 1 – c – b + bc – a + ac + ab – abc > 0 
⇔ 1 – (a + b + c) + ab + bc + ca > abc 

Nên abc < -1 + ab + bc + ca 
⇔ 2abc < -2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2 
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2 
⇔ a² + b² + c² + 2abc < 2 

--> đpcm 

22 tháng 7 2018

cho bạn nè: https://olm.vn/hoi-dap/question/108981.html

vào đó mà xem nha...

Từ a+b+c=0 có b+c =-a 
Suy ra (b+c)^2 = (-a)^2 hay b^2 + c^2 +2bc = a^2 
hay b^2 + c^2 -a^2 = -2bc 

Suy ra (b^2 + c^2 - a^2)^2 = (-2bc)^2 
<=> b^4 + c^4 + a^4 +2b^2.c^2 - 2a^2.b^2 - 2a^2.c^2 = 4b^2.c^2 
<=> a^4 + b^4 + c^4 = 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2 
<=> 2(a^4 + b^4 + c^4) =a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2 
<=> 2(a^4 + b^4 + c^4 ) =(a^2 + b^2 + c^2): Đpcm

8 tháng 12 2016

2(a^2+b^2)=(a+b)^2

2a2+2b2=a2+b2+2ab

2a2+2b2-a2-b2-2ab=0

a2-2ab+b2=0

(a-b)2=0

a-b=0

        Suy ra a=b(ĐPCM)