K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2022

-Sửa đề: \(a,b>0\)

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{a}\)

\(\Leftrightarrow\dfrac{a^4+b^4}{a^2b^2}\ge\dfrac{a^2+b^2}{ab}\)

\(\Leftrightarrow a^3b^3.\dfrac{a^4+b^4}{a^2b^2}\ge a^3b^3.\dfrac{a^2+b^2}{ab}\)

\(\Leftrightarrow\left(a^4+b^4\right)ab\ge\left(a^2+b^2\right)a^2b^2\)

\(\Leftrightarrow\left(a^4+b^4\right)ab-\left(a^2+b^2\right)a^2b^2=0\)

\(\Leftrightarrow ab\left[a^4+b^4-\left(a^2+b^2\right)ab\right]\ge0\)

\(\Leftrightarrow ab\left(a^4+b^4-a^3b-ab^3\right)\ge0\)

\(\Leftrightarrow ab\left[a^3\left(a-b\right)+b^3\left(b-a\right)\right]\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (đúng)

 

 

8 tháng 5 2021

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

Có : \(a,b\ge0\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )

Vậy ...

29 tháng 10 2021

Ta có : 
VT = a2(b-c) + b2(c-a) + c2(a-b)
= a2b - a2c + b2c - b2a + c2a - c2b
= ( a2b - b2a ) - ( a2c - b2c ) + ( c2a - c2b )
= ab(a-b) - c(a2-b2) + c2(a-b)
= ab(a-b) - c(a-b)(a+b) + c2(a-b)
=(a-b) [ ab - c(a+b) + c2 ] 
= (a-b) [ ab-ca-cb+c2 ]
= (a-b) [ b(a-c) - c(a-c) ]
= (a-b)(a-c)(b-c)
= (a-c)(b-a)(c-b)
Mà VP = (a-c)(b-a)(c-b)
⇒ VT = TP
⇒ a2 (b-c) + b2 ( c-a ) + c2 ( a-b) = (a-c)(b-a)(c-b)
Chép lẹ ii coan , nhanh ko mai m chết vs thầy :))

29 tháng 10 2021

sương sương có vài dòng thôi đúng ko , tick cho t ii m :33

19 tháng 6 2020

CM theo bdt co-si

Áp dụng bdt Co - si cho cặp số dương a2/c và c

Ta có: \(\frac{a^2}{c}+c\ge2\sqrt{\frac{a^2}{c}.c}=2a\)(1)

CMTT: \(\frac{b^2}{a}+a\ge2b\)(2)

         \(\frac{c^2}{b}+b\ge2c\)(3)

Từ (1); (2) và (3) cộng vế theo vế, ta có:

\(\frac{a^2}{c}+c+\frac{b^2}{a}+a+\frac{c^2}{b}+b\ge2a+2b+2c\)

<=> \(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge2a+2b+2c-a-b-c=a+b+c\)(Đpcm)

19 tháng 6 2020

\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra <=> a = b = c

8 tháng 9 2017

toi bạn rùi cmr là chết mày rùi

8 tháng 9 2017

a² + b² + c² + d² + e² ≥ a(b + c + d + e) 

Ta có: a² + b² + c² + d² + e² 

= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) 

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab 

Tương tự ta có: 

. a²/4 + c² ≥ ac 
. a²/4 + d² ≥ ad 
. a²/4 + e² ≥ ae 

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae 

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e) --> đ.p.c.m 

Dấu " = " xảy ra <=> a/2 = b = c = d = e 

P/s: Hơi hơi dễ nhỉ

11 tháng 9 2016

biến đổi vế phải thành vế trái, đơn giản thế cũng hỏi

7 tháng 9 2017

A) a2+b2+c2+ab+bc+ca>=0 (*)

<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0

<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0

<=> (a+b)2+(b+c)2+(c+a)2>=0

BĐT cuối luôn đúng với mọi a,b,c 

Vậy BĐT (*) đc cm

Phần B cũng tương tự nhé

7 tháng 9 2017

a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2

Mà \(\left(a+b+c\right)^2\ge0\forall x\)

Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)

b) hình như sai đề rồi bạn à !

24 tháng 4 2020

Vô lí : VT có kết quả = 0 mà VP luôn >= 0 

dấu "=" xẩy ra <=> a=b=0