Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như là không
Quá dài nên có thể lẫn lộn
Cách đơn giản hơn
Ta có:
41=4
42=16
43=64
44=256
...
=>Số 4 mũ lẽ tận cùng = 4. Số 4 mũ chẵn tận cùng = 6
Áp dụng vào 42010 ta có:
42010 có mũ là số chẵn
=> 42010 tận cùng là số 6
Tương tự áp dụng vào 22014 :
Ta có:
21= 2
22 = 4
23 = 8
24 =16
25= 32
26 = 64
...
=> Số tận cùng của kết quả theo chu kì 2, 4, 8, 6.
Ta có: 2014 : 4 = 503 (dư 2)
Vậy theo chu kì thì 22014 tận cùng bằng số 4
Ta có:
42010 tận cùng = 6
22014 tận cùng = 4
Tận cùng 2 thừa số này cộng lại ra 10
=> 42010 + 22014 có tận cùng là số 0
=> 42010 + 22014 chia hết cho 10
Chúc bạn hok tốt!
#TTVN
a/ Ta có :
\(9^{1945}-2^{1930}=\left(9^5\right)^{389}-\left(2^{10}\right)^{193}=\left(.....9\right)-\left(.....4\right)=\left(............5\right)⋮5\)
\(\Leftrightarrowđpcm\)
=88-165
=224-220
=220.[24-1]
=220.15 chia hết cho 15
Vậy 88-165 chia hết cho 15
b,
=105-253
=55.25-56
=55.[25-5]
=55.27 chia hết cho 27
Vậy 105-253 chia hết cho 27
\(5^{10}+5^9+5^8=5^8.\left(5^2+5+1\right)=5^8.31\) chia hết cho 31
\(5^{10}+5^9+5^8=5^8\left(5^2+5+1\right)\)
\(=5^8\left(25+5+1\right)=5^8.31⋮31\)
Vậy biểu thức trên chia hết cho 31
giả sử a chia hết cho 5
=>a2 chia hết cho 5
=>a2-1 không chia hết cho 5
nếu a2-1 chia hết cho 5
=>a2 đồng dư với 1(mod 5)
=>a đồng dư với -1 hoặc 1(mod 5)
=>a có tận cùng là 4;6;1;9
=>đpcm
^-^
Ta có:
57+58+59
=57(1+5+52)
=57.31
Vì 31 chia hết cho 31=)57.31 chia hết cho 31
Vậy 57+58+59 chia hết cho 31
Học tốt nhé
c)\(^{5^7+5^8+5^9}\)
= \(5^7\left(1+5+5^2\right)\)
= \(5^7.31\)
\(5^7.31⋮31\)
\(\Rightarrow\)\(5^7+5^8+5^9\)\(⋮\)\(31\)
91945-21930= (94)486.9 - (24)482.22= (....1).9 - (....6) . 4= (....9) - (....4)= (...5)
Vì (...5)\(⋮\)5 nên (91945-21930) \(⋮\)5
Vậy...
Phần kia tương tự nha bn