Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo công thức, ta có:
(x+6)2=x2+12x+36
(x-6)2=x2-12x+36
Vậy P=\(\frac{\left(x^2+12x+36\right)+\left(x^2-12x+36\right)}{x^2+36}\)
=>P=\(\frac{2x^2+72}{x^2+36}\)
=>P=\(\frac{2\left(x^2+36\right)}{x^2+36}\)
Vì x2+36 khác 0 với x c Q nên ta được P=2.
Vậy P luôn có giá trị bằng 2 với mọi giá trị của x.
Câu 1: Giá trị của x thỏa mãn
|x+2,37|+|y−5,3|=0
Để GTBT bằng 0 thì |x+2,37| = 0 và |y−5,3| = 0
-> x = -2,37 , y = 5,3
Vậy x = -2,37
Câu 2: Giá trị của y thỏa mãn
−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0
-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)
-> |y−1,37| = 0 -> y = 1,37
Vậy y = 1,37
\(\left(x^2-2x\right)\left|3x-7\right|=0\)
=> TH1: \(x^2-2x=0\) => \(x\left(x-2\right)=0\)
=> x = 0 hoặc 2
TH2: \(3x-7=0\)
=> \(3x=-7\) => \(x=-\frac{3}{7}\)
Vậy có 3 giá trị x thoả mãn
(x2-2x)*|3x-7|=0
=>x2-2x=0 hoặc |3x-7|=0
Xét x2-2x=0 =>x(x-2)=0
=>x=0 hoặc 2
Xét |3x-7|=0 =>3x-7=0
=>3x=7
=>x=7/3
Vậy có 3 giá trị x thỏa mãn
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
Nhận xét: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\forall a,b\)
\(\Rightarrow\)\(\left|x-7\right|+\left|x-10\right|=\left|x-7\right|+\left|10-x\right|\ge\left|x-7+10-x\right|=3\forall x\)
Vậy \(\left|x-7\right|+\left|x-10\right|\)không thể bằng 2
Vũ Duy Quang Ban thieu dau dang thuc xay ra nhe !
Dấu "=" xảy ra tại \(\left(x-7\right)\left(10-x\right)\ge0\)
\(\Leftrightarrow7\le x\le10\)