K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

Theo công thức, ta có:

           (x+6)2=x2+12x+36

            (x-6)2=x2-12x+36

Vậy     P=\(\frac{\left(x^2+12x+36\right)+\left(x^2-12x+36\right)}{x^2+36}\)

       =>P=\(\frac{2x^2+72}{x^2+36}\)

       =>P=\(\frac{2\left(x^2+36\right)}{x^2+36}\)

Vì x2+36 khác 0  với x c Q nên ta được P=2.

Vậy P luôn có giá trị bằng 2 với mọi giá trị của x.

3 tháng 4 2020

\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)

a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)

\(\Rightarrow C>0\forall x\)(đpcm)

b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)

\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)

\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)

\(\Leftrightarrow x\in\left\{0\right\}\)

....

c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)

Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)

\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

:33

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

$M=\frac{3(x^2+1)+x^2y^2+y^2-2}{(x+y)^2+5}=\frac{3x^2+x^2y^2+y^2+1}{(x+y)^2+5}$

Ta thấy:

$x^2\geq 0; x^2y^2\geq 0; y^2\geq 0$ nên:

$3x^2+x^2y^2+y^2+1\geq 1>0$ với mọi $x\mathbb{Q}, y\in\mathbb{R}$

$(x+y)^2\geq 0\Rightarrow (x+y)^2+5\geq 5>0$ với mọi 

$x\mathbb{Q}, y\in\mathbb{R}$

Do đó: $M>0$ (do cả tử và mẫu đều lớn hơn 0)

Hay $M$ là số dương (đpcm)

 

23 tháng 4 2017

a) \(\left(\frac{3}{5}x^2-0,4x-0,5\right)-\left(1-\frac{2}{5}x+0,6x^2\right)\)

\(=\frac{3}{5}x^2-0,4x-0,5-1+\frac{2}{5}x-0,6x^2\)

\(=\frac{3}{5}x^2-\frac{2}{5}x-\frac{1}{2}-1+\frac{2}{5}x-\frac{3}{5}x^2\)

\(=-\frac{3}{2}\)

b) \(1,7-12a^2-2+5a^2-7a+2,3+7a^2+7a\)

\(=2\)

c) \(1-b^2-5b+3b^2+1+5b-2b^2\)

\(=2\)

17 tháng 12 2016

lop 7 lam gi co nghiem voi da thuc ha ban

18 tháng 12 2016

Đề thi HSG lớp 7 đó bạn

2 tháng 11 2016

Vì giá trị của biểu thức A không phụ thuộc vào giá trị của x;y nên nếu x;y giảm hoặc tăng 1 số đơn vị thì giá trị của A không đổi

Giả sử x và y tăng nên lần lượt m và n đơn vị

Lúc này ta có: \(A=\frac{ax+by}{cx+dy}=\frac{a.\left(x+m\right)+b.\left(y+n\right)}{c.\left(x+m\right)+d.\left(y+n\right)}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(A=\frac{ax+by}{cx+dy}=\frac{a\left(x+m\right)+b\left(y+n\right)}{c\left(x+m\right)+d\left(y+n\right)}=\frac{\left[a\left(x+m\right)+b\left(y+n\right)\right]-\left(ax+by\right)}{\left[c\left(x+m\right)+d\left(y+n\right)\right]-\left(cx+dy\right)}\)

\(=\frac{am+bn}{cm+dn}\)

=> (ax + by).(cm + dn) = (am + bn).(cx + dy)

=> (ax + by).cm + (ax + by).dn = (am + bn).cx + (am + bn).dy

=> acxm + bcym + adxn + bdyn = acxm + bcxn + adym + bdyn

=> bcym + adxn = bcxn + adym

=> bcym - bcxn = adym - adxn

=> bc.(ym - xn) = ad(ym - xn)

=> bc = ad

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

31 tháng 10 2016

bài này mình ko biết làm nè