Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)
\(\Rightarrow C>0\forall x\)(đpcm)
b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)
\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)
\(\Leftrightarrow x\in\left\{0\right\}\)
....
c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)
Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)
\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)
:33
Lời giải:
$M=\frac{3(x^2+1)+x^2y^2+y^2-2}{(x+y)^2+5}=\frac{3x^2+x^2y^2+y^2+1}{(x+y)^2+5}$
Ta thấy:
$x^2\geq 0; x^2y^2\geq 0; y^2\geq 0$ nên:
$3x^2+x^2y^2+y^2+1\geq 1>0$ với mọi $x\mathbb{Q}, y\in\mathbb{R}$
$(x+y)^2\geq 0\Rightarrow (x+y)^2+5\geq 5>0$ với mọi
$x\mathbb{Q}, y\in\mathbb{R}$
Do đó: $M>0$ (do cả tử và mẫu đều lớn hơn 0)
Hay $M$ là số dương (đpcm)
a) \(\left(\frac{3}{5}x^2-0,4x-0,5\right)-\left(1-\frac{2}{5}x+0,6x^2\right)\)
\(=\frac{3}{5}x^2-0,4x-0,5-1+\frac{2}{5}x-0,6x^2\)
\(=\frac{3}{5}x^2-\frac{2}{5}x-\frac{1}{2}-1+\frac{2}{5}x-\frac{3}{5}x^2\)
\(=-\frac{3}{2}\)
b) \(1,7-12a^2-2+5a^2-7a+2,3+7a^2+7a\)
\(=2\)
c) \(1-b^2-5b+3b^2+1+5b-2b^2\)
\(=2\)
Vì giá trị của biểu thức A không phụ thuộc vào giá trị của x;y nên nếu x;y giảm hoặc tăng 1 số đơn vị thì giá trị của A không đổi
Giả sử x và y tăng nên lần lượt m và n đơn vị
Lúc này ta có: \(A=\frac{ax+by}{cx+dy}=\frac{a.\left(x+m\right)+b.\left(y+n\right)}{c.\left(x+m\right)+d.\left(y+n\right)}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(A=\frac{ax+by}{cx+dy}=\frac{a\left(x+m\right)+b\left(y+n\right)}{c\left(x+m\right)+d\left(y+n\right)}=\frac{\left[a\left(x+m\right)+b\left(y+n\right)\right]-\left(ax+by\right)}{\left[c\left(x+m\right)+d\left(y+n\right)\right]-\left(cx+dy\right)}\)
\(=\frac{am+bn}{cm+dn}\)
=> (ax + by).(cm + dn) = (am + bn).(cx + dy)
=> (ax + by).cm + (ax + by).dn = (am + bn).cx + (am + bn).dy
=> acxm + bcym + adxn + bdyn = acxm + bcxn + adym + bdyn
=> bcym + adxn = bcxn + adym
=> bcym - bcxn = adym - adxn
=> bc.(ym - xn) = ad(ym - xn)
=> bc = ad
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Theo công thức, ta có:
(x+6)2=x2+12x+36
(x-6)2=x2-12x+36
Vậy P=\(\frac{\left(x^2+12x+36\right)+\left(x^2-12x+36\right)}{x^2+36}\)
=>P=\(\frac{2x^2+72}{x^2+36}\)
=>P=\(\frac{2\left(x^2+36\right)}{x^2+36}\)
Vì x2+36 khác 0 với x c Q nên ta được P=2.
Vậy P luôn có giá trị bằng 2 với mọi giá trị của x.